Groundwater Monitoring and Progress Report March 2006 Sampling Event

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

Sierra Pacific Industries

May 2006

Project No. 9329.000, Task 23/32

May 5, 2006 Project 9329.000

Executive Officer California Regional Water Quality Control Board North Coast Region 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

Attention: Kasey Ashley

Subject:

Groundwater Monitoring and Progress Report

March 2006 Sampling Event Sierra Pacific Industries Arcata Division Sawmill

Arcata, California

Dear Ms. Ashley:

As requested by Sierra Pacific Industries, we have enclosed a copy of the subject report.

Sincerely yours,

GEOMATRIX CONSULTANTS, INC.

Mike Keim

Senior Environmental Scientist

Mike Klim

Edward P. Conti, CEG, CHG

Principal Geologist

RAS/EPC/abr

I\Doc_Safe\9000s\9329\28-Task\March 2005 Sample Event\200503_TransmittalLtr.doc

Enclosure

cc:

Bob Ellery, Sierra Pacific Industries (with enclosure) Gordie Amos, Sierra Pacific Industries (with enclosure) Fred Evenson, Law Offices of Frederic Evenson (with enclosure) Jim Lamport, Ecological Rights Foundation (with enclosure)

Groundwater Monitoring and Progress Report March 2006 Sampling Event

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Prepared for:

Sierra Pacific Industries

Prepared by:

Geomatrix Consultants, Inc.

2101 Webster Street, 12th Floor Oakland, California 94612 (510) 663-4100

May 2006

Project No. 9329.000, Task 23/32

PROFESSIONAL CERTIFICATION

GROUNDWATER MONITORING AND PROGRESS REPORT MARCH 2006 SAMPLING EVENT

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

May 5, 2006 Project No. 9329.000, Task 23/32

This report was prepared by Geomatrix Consultants, Inc., under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

EDWARD P.
CONTI

No. 214
CERTIFIED
HYDRO
GEOLOGIST

OF CALFORN

Edward P. Conti, CEG, CHG

Principal Geologist

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	SITE BACKGROUND	1
	2.1 History	
	2.2 LITHOLOGY	
	2.3 Hydrogeology	
3.0	MARCH 2006 GROUNDWATER MONITORING	4
	3.1 FIELD METHODS	
	3.2 Laboratory Methods	4
	3.3 LABORATORY DATA QUALITY REVIEW	4
	3.4 RESULTS OF GROUNDWATER MONITORING	4
	3.4.1 Occurrence and Movement of Groundwa	
	3.4.2 Groundwater Analytical Results	4
4.0	PILOT STUDY PROGRESS	4
	4.1 FIELD METHODS	4
	4.2 LABORATORY METHODS	4
	4.3 GROUNDWATER ANALYTICAL RESULTS	4
	4.4 LABORATORY DATA QUALITY REVIEW	4
5.0	WASTEWATER DISPOSAL	4
6.0	FUTURE MONITORING AND SAMPLING SCHEDU	ULE4
7.0	REFERENCES	4

TABLE OF CONTENTS

(Continued)

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Summary of Water Level Measurements
Table 3	Summary of Water Quality Parameters
Table 4	Laboratory Analytical Results for Chlorinated Phenols (Canadian Pulp Method)
Table 5	Laboratory Analytical Results for Truck Shop Monitoring Wells
Table 6	Field Measurements and Laboratory Analytical Results for Natural Attenuation Parameters
Table 7	Laboratory Analytical Results for Chlorinated Phenols and Phenol (8270 SIM Method)
Table 8	Laboratory Analytical Results for Dioxins and Furans
	FIGURES
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Former Green Chain Area Plan
Figure 4	Truck Shop Area Plan
Figure 5	Potentiometric Surface Map of Shallow Groundwater Sawmill Area, March 22, 2006
Figure 6	Potentiometric Surface Map of Deep Groundwater Sawmill Area, March 22, 2006
Figure 7	Potentiometric Surface Map, Truck Shop Area, March 23, 2006
Figure 8	Pentachlorophenol and Degradation Constituents in Shallow Groundwater - March 2006
	APPENDIXES
Appendix A	Field Documentation
Appendix B	Laboratory Reports and Chain-of-Custody Records for Groundwater Samples
Appendix C	Laboratory Data Quality Review

GROUNDWATER MONITORING AND PROGRESS REPORT MARCH 2006 SAMPLING EVENT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

1.0 INTRODUCTION

This report presents the methods and results of the March 2006 groundwater monitoring event and a progress report for remediation pilot study activities at the Sierra Pacific Industries (SPI) Arcata Division Sawmill located in Arcata, California (the site, Figure 1). Groundwater monitoring in the area of the sawmill was performed in accordance with Monitoring and Reporting Program (MRP) No. R1-2003-0127, which was revised and reissued by the California Regional Water Quality Control Board, North Coast Region (RWQCB) on

March 4, 2005. Groundwater monitoring in the area of the truck shop was performed in accordance with the *Work Plan for Installation of Monitoring Wells and Piezometer* (Work Plan; Geomatrix, 2005a), which was approved by the RWQCB on July 14, 2005. Groundwater monitoring associated with the remediation pilot study was performed in accordance with the *Pilot Study Work Plan for Implementation of Proposed Remedial Action* (Geomatrix, 2004b).

Geomatrix Consultants, Inc. (Geomatrix), has prepared this report on behalf of SPI to provide the status of groundwater monitoring and the results of the remediation pilot study activities conducted at the site.

This report is organized as follows: Site Background, including a discussion of site history, subsurface lithology, and hydrogeology (Section 2.0); March 2006 Groundwater Monitoring (Section 3.0); Pilot Study Progress (Section 4.0); Wastewater Disposal (Section 5.0); Future Monitoring and Sampling Schedule (Section 6.0); and References (Section 7.0).

2.0 SITE BACKGROUND

This section provides background information regarding the site setting and history and discusses subsurface conditions at the site, including lithology and hydrogeology. Subsurface lithologic and hydrogeologic conditions at the site were previously investigated and described by EnviroNet Consulting (EnviroNet, 2002a).

2.1 HISTORY

The approximately 68-acre site is located on the Samoa Peninsula, along the northern shoreline of Humboldt Bay and approximately 4 miles west of the town of Arcata, California. The site is bounded to the east by the Mad River Slough, to the northwest by an old railroad grade, and to the south by New Navy Base Road and mud flats of Humboldt Bay (Figure 1).

The site is currently an active sawmill; features are shown on Figure 2. The sawmill has operated at the site since approximately 1950. Prior to construction of the mill facilities, the site consisted of undeveloped sand dunes and mud flats. During construction of mill facilities in the 1950s and 1960s, portions of the Mad River Slough on the eastern, northern, and southern sides of the site were filled. The current mill facility consists of an administrative building, a main sawmill building, numerous wood-processing buildings, log storage areas, milled lumber storage areas, and loading/unloading areas. A 140-foot-deep water supply well (Feature 48 on Figure 2) provides water for log sprinkling. An older, shallow water supply well is located adjacent to the 140-foot well, but has not been used since it began to produce sand.

Wood surface protection activities historically conducted at the site included the use of an antistain solution containing chlorinated phenols, including pentachlorophenol (PCP) and tetrachlorophenol, to control sap stain and mold on a small amount of milled lumber. The antistain solution was applied in an aboveground dip tank located in the middle of the former green chain, which was located immediately south of the eastern end of the current sorter building (Feature 49 on Figure 2). Use of the solution containing chlorinated phenols in the former green chain area of the site reportedly commenced in the early to mid-1960s and was discontinued in 1985 (EnviroNet, 2002b). At the direction of the RWQCB, SPI stopped purchasing anti-stain solution containing chlorinated phenols in 1985 and commenced a process of relocating the remaining solution containing chlorinated phenols to a new dip tank facility for recycling (MFG, 2003a). Due to the difficulty of disposing of the old solution containing chlorinated phenols, the remaining solution from the old dip tank was mixed with a new anti-stain solution that did not contain chlorinated phenols at the new dip tank facility (Feature 21 on Figure 2). Recycling of the solution containing chlorinated phenols in the new dip tank continued until 1987, at which time the drip basin adjacent to the old dip tank was cleaned out, filled with sand, and capped with 3 to 4 inches of concrete (MFG, 2003a). The new dip tank has been cleaned three times since 1987.

The potential effects of wood surface protection activities on soil and groundwater have been investigated to depths of approximately 20 feet below ground surface (bgs). In 2002, investigation activities included the installation of 19 monitoring wells at the site: 15 monitoring wells (MW-1 through MW-12, MW-14, MW-17, and MW-18) were constructed to monitor shallow groundwater between depths of approximately 2 and 8 feet bgs, and four monitoring wells (MW-13D, MW-15D, MW-16D, and MW-19D) were constructed to monitor deeper groundwater between depths of approximately 15 and 20 feet bgs (EnviroNet, 2003). Two additional monitoring wells (MW-20 and MW-21) were installed in January and February 2004 to monitor shallow groundwater (Geomatrix, 2004a). Monitoring well locations are illustrated on Figure 3. Monitoring well construction details are included in Table 1.

For an unknown period of time ending in the 1970s, an underground storage tank (UST) was used to store waste oil from vehicle maintenance activities (MFG, 2003b). The UST was located behind (north of) the truck shop building (Figure 4) and buried at a depth so that the waste oil would flow by gravity from drip pans inside the truck shop. Based on the personal accounts of employees from that period, use of the tank was discontinued during the 1970s, but the employees were not certain as to whether the UST had been removed. In April 2003, the UST was located and removed. In 2005, two monitoring wells (MW-22 and MW-23) and two piezometers (P-24 and P-25) were installed to monitor shallow groundwater in the truck shop area (Geomatrix, 2006). The monitoring well and piezometer locations are illustrated on Figure 4. Monitoring well and piezometer construction details are included in Table 1.

2.2 LITHOLOGY

The site is located adjacent to the Mad River Slough near the northern shoreline of Humboldt Bay. The eastern, northern, and southern portions of the site were filled in the 1950s and 1960s.

In the sawmill area, subsurface lithology within the shallow zone (less than 8 feet bgs) is predominantly fine- to medium-grained sand of apparent sand dune origin. Wood and fill material was locally observed in this shallow zone during activities such as the installation of monitoring wells MW-13D and MW-15D. Soil beneath the fine- to medium-grained sand consisted of more sand and locally of fine-grained material, classified as "bay mud." The fine-grained material was encountered during the installation of monitoring wells MW-3, MW-10, MW-15D, MW-16D, and MW-17 at depths of approximately 6 to 8 feet bgs and during the installation of monitoring well MW-15 at a depth of approximately 15 feet bgs. Soil described during the installation of a water supply well at the site (Feature 48 on Figure 2) suggests that

subsurface soil between the ground surface and 140 feet bgs is predominately composed of sand (EnviroNet, 2001).

In the truck shop area, the subsurface lithology to 6 to 7.5 feet bgs consists generally of fine- to medium-grained sand that has been characterized as being of sand dune origin with varying amounts of clay, silt and gravel (MFG, 2003b and Geomatrix 2004). In general, silt was encountered beneath the sand layer. In two borings, WO-1 and WO-7, the sand extended to the total depth of exploration, 12 feet bgs. In four borings (WO-4, -5, -6 and -8), up to 1.0 foot of peat was present beneath the sand and above the silt. In the boring for MW-22, a 1.5 foot thick clay layer was present from depths of 6 to 7.5 feet bgs. Non-native materials (aggregate base beneath asphalt, wood debris, and/or other non-native fill soils) were encountered in the borings for MW-22, MW-23, P-24 and P-25 (Geomatrix, 2006). The non-native materials were encountered in these borings from the ground surface to depths of to 1.0 feet bgs (MW-23) to 9.0 feet bgs (P-25).

2.3 HYDROGEOLOGY

The groundwater surface measured in 23 monitoring wells and two piezometers has ranged between approximately 0.5 and 5 feet bgs in the 21 shallow wells and piezometers (i.e., screened from 2 to 8 feet bgs, 2.5 to 9 feet bgs, or 3.5 to 9 feet bgs) and between approximately 4 and 6 feet bgs in the four deeper wells (i.e., screened from 15 to 20 feet bgs). In the eastern (sawmill) portion of the site, groundwater flow generally is to the east, toward the Mad River Slough (MFG and Geomatrix, 2003). In the southwestern (truck shop) portion of the site, groundwater flows to the south-southeast, toward Humboldt Bay (Geomatrix, 2006).

Tidal fluctuations in the Mad River Slough and nearby Humboldt Bay influence groundwater levels at the site in the vicinity of the slough. A 2002 tidal influence study conducted at the site suggested that tidal effects become negligible at distances greater than 100 feet from the slough shore (EnviroNet, 2003).

3.0 MARCH 2006 GROUNDWATER MONITORING

This section presents field and laboratory methods and results of groundwater monitoring activities conducted during this period in accordance with the MRP and the Work Plan.

3.1 FIELD METHODS

On March 22, 2006, depth to water was measured in all sawmill-area site monitoring wells (MW-1 through MW-21, Figure 3) and at a monitoring point in the Mad River Slough using an

electronic sounder (Table 2). Water levels were measured in the wells on the first day of sampling, before conducting groundwater sampling activities. Monitoring wells were gauged in sequence from lowest expected concentrations of constituents of concern (first) to highest expected concentrations (last), based on laboratory analytical results from the previous sampling event. On March 23, 2006, depth to water was measured in all truck shop-area site monitoring wells and piezometers (MW-22, MW-23, P-24, and P-25, Figure 4) using an electronic sounder (Table 2). On both days, field personnel cleaned the meter used to measure the groundwater surface before use at each location. The equipment was washed in an Alconox® detergent solution and then rinsed with distilled water.

Fourteen monitoring wells (MW-1, MW-2, MW-6 through MW-9, MW-13D, MW-14, MW-15D, MW-16D, MW-20, MW-21, MW-22, and MW-23) were purged and sampled on March 22, 23, and 24, 2006, in accordance with the site MRP and truck shop monitoring well installation work plan. For wells MW-6, MW-8, MW-9, MW-13D, MW-15D, MW-16D, MW-22, and MW-23, field personnel used dedicated, disposable Teflon® bailers to remove standing water in the well casing. For monitoring wells MW-1, MW-2, MW-7, MW-14, MW-20, and MW-21, field personnel used a peristaltic pump and dedicated tubing and low-flow purging/sampling techniques in conjunction with pilot study activities (Section 4.0). Field personnel measured and recorded temperature, pH, specific conductance, and total dissolved solids (TDS, for sawmill wells only) on field sampling records during groundwater purging using a bailer. For bailer-purged wells, the purging activities were ceased when a minimum of three well casing volumes of water had been removed and water quality parameters had stabilized to within 10 percent of specific conductance, 0.05 pH units for pH, and 1 degree Celsius for temperature. For peristaltic pump-purged wells, the purging activities were ceased when the water quality parameters stabilized to within approximately 10 percent for specific conductance, oxidation-reduction potential, and dissolved oxygen; 0.05 pH units for pH; and 1 degree Celsius for temperature. Copies of the field records for groundwater monitoring and sampling activities are included in Appendix A.

After purging, groundwater samples were collected using the dedicated Teflon® bailers or, for monitoring wells included in the pilot study program, a peristaltic pump and dedicated tubing. A field sample of groundwater was monitored for temperature, pH, specific conductance, and TDS (for sawmill-area wells only) just prior to collecting the groundwater sample to record the water quality parameters of the groundwater being sampled. These field parameters are summarized in Table 3. Historical laboratory analytical results for TDS also are shown in this table.

Groundwater collected from each of the 12 sawmill-area monitoring wells was placed in a 125-milliliter (ml) glass vial that was sealed with a Teflon®-lined screw cap. Groundwater collected from each of the two truck shop-area monitoring wells was placed in three 1-liter amber bottles and three 40-ml vials preserved with hydrochloric acid and sealed with screw caps with Teflon®-lined septa. After filling, the vials and bottles were labeled and placed in an ice-cooled, insulated chest for transport to the laboratory for analysis. Chain-of-custody records were completed for the samples and accompanied the samples until received by the laboratory. Copies of the chain-of-custody records for the groundwater samples are included in Appendix B.

An additional groundwater sample was collected from monitoring well MW-21 and submitted to the laboratory as a blind duplicate sample, labeled MW-A-200603. This sample was placed in an additional 125-ml glass vial sealed with a Teflon®-lined screw cap and sent to the laboratory as described above.

3.2 LABORATORY METHODS

Groundwater samples collected from monitoring wells MW-1, MW-2, MW-6 through MW-9, MW-13D through MW-16D, MW-20, and MW-21 located in the sawmill area were analyzed at Alpha Analytical Laboratories, Inc. (Alpha), of Ukiah, California, a California Department of Health Services- certified analytical laboratory. These samples were analyzed for the chlorinated phenols (including PCP; 2,3,5,6-tetrachlorophenol; 2,3,4,6-tetrachlorophenol; 2,3,4,5-tetrachlorophenol; and, 2,4,6-trichlorophenol) in accordance with the Canadian Pulp method.

Groundwater samples collected from monitoring wells MW-22 and MW-23 located in the trench shop area were analyzed by Friedman & Bruya, Inc. (Friedman & Bruya) of Seattle, Washington, a California Department of Health Services-certified analytical laboratory. These samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline, TPH as diesel, and TPH as motor oil by EPA Method 8015M and for benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8021B. A silica gel preparation procedure, based on EPA Method 3630B, was performed on the sample extracts prior to the TPH as diesel and TPH as motor oil analyses.

3.3 LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed the quality of laboratory data generated for the groundwater sampling as discussed in Appendix C. Based on the procedures and data quality review, the analytical data quality is satisfactory and the sample results appear to be representative.

3.4 RESULTS OF GROUNDWATER MONITORING

Monitoring and sampling results from site wells and piezometers include groundwater elevation measurements, field measurements of water quality parameters, and laboratory analysis of groundwater samples. Groundwater elevation data provide information on subsurface hydraulic conditions, discussed below as occurrence and movement of groundwater. Groundwater quality is evaluated based on the laboratory analysis of chlorinated phenols, TPH as gasoline, TPH as diesel, TPH as motor oil, and BTEX. The results are presented below.

3.4.1 Occurrence and Movement of Groundwater

The groundwater surface measured in the sawmill-area shallow monitoring wells (i.e., screened from approximately 2 to 8 feet bgs) ranged from 0.42 to 5.27 feet below the measuring point, and groundwater elevations ranged from 4.34 to 9.79 feet above mean sea level relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of shallow groundwater flow is generally to the east (Figure 5). The magnitude of the lateral hydraulic gradient ranges from approximately 0.003 foot/foot in the former green chain vicinity to approximately 0.03 foot/foot beneath the sawmill and maintenance buildings. Groundwater elevations within 100 feet of the Mad River Slough shoreline are subject to tidal fluctuations (EnviroNet, 2003), consequently, the water level elevation in well MW-1 was not used to evaluate the lateral hydraulic gradient of shallow groundwater.

The groundwater surface measured in deep monitoring wells at the site (i.e., screened from approximately 15 to 20 feet bgs) ranged from 3.76 to 5.18 feet below the measuring point, and groundwater elevations ranged from 5.98 to 6.80 feet above mean sea level, relative to the North American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of deep groundwater flow is generally to the east (Figure 6). The magnitude of the lateral hydraulic gradient is approximately 0.004 foot/foot.

The groundwater surface measured in the truck shop-area shallow monitoring wells and piezometers ranged from 2.69 to 4.38 feet below the measuring point, and groundwater elevations ranged from 10.74 to 12.64 feet above mean sea level, relative to the North

American Vertical Datum of 1988. Groundwater elevation data from these monitoring wells indicate that the direction of shallow groundwater flow is generally to the southeast (Figure 7). The magnitude of the lateral hydraulic gradient is approximately 0.03 foot/foot.

3.4.2 Groundwater Analytical Results

Twelve sawmill-area groundwater monitoring wells were sampled during this period in accordance with the MRP (MW-1, MW-2, MW-6 through MW-9, MW-13D, MW-14, MW-15D, MW-16D, MW-20, and MW-21). Copies of the laboratory analytical report and sample chain-of-custody records are included in Appendix B. The results for the chlorinated phenol analyses are summarized in Table 4. These results also are illustrated on Figure 8 (shallow groundwater).

PCP and tetrachlorophenols were detected in groundwater samples from 2 of the 12 monitoring wells (MW-7 and MW-21; Table 4), and 2,4,6-trichlorophenol was detected in one of the wells (MW-21). The detected concentrations of PCP using the Canadian Pulp Method were 1,900 micrograms per liter (μg/L) in the sample from MW-7 and 13,000 μg/L and 14,000 μg/L in the samples collected from monitoring well MW-21 (primary and blind duplicate samples, respectively). The detected concentrations of PCP using EPA Method 8270, conducted in conjunction with the pilot study, were 1,200 μg/L in the sample from MW-7 and 7,700 and 8,000 μg/L in the samples collected from monitoring well MW-21 (primary and blind duplicate samples, respectively). The pilot study results are discussed below in Section 4.0. Chlorinated phenols were not detected at or above the laboratory reporting limits in the samples collected from monitoring wells MW-1, MW-2, MW-6, MW-8, MW-9, MW-13D, MW-14, MW-15D, MW-16D, and MW-20.

Two truck shop-area groundwater monitoring wells (MW-22 and MW-23) were sampled during this period. Copies of the laboratory analytical reports and sample chain-of-custody record are included in Appendix B. The results for the TPH as gasoline, TPH as diesel, TPH as motor oil, and BTEX analyses are summarized in Table 5.

In the sample collected from MW-22, TPH as gasoline was detected at a concentration of $66 \,\mu g/L$, and toluene was detected at a concentration of $16 \,\mu g/L$. Benzene, ethylbenzene, xylene, TPH as diesel and TPH as motor oil were not detected at or above the laboratory method reporting limit in the sample collected from MW-22. In the sample collected from monitoring well MW-23, TPH as gasoline, benzene, toluene, ethylbenzene, xylene, TPH as diesel and TPH as motor oil were not detected.

4.0 PILOT STUDY PROGRESS

This section presents a summary of activities performed in accordance with the *Pilot Study Work Plan for Implementation of Proposed Remedial Action* (Geomatrix, 2004b) during the period January through March 2006. The objectives of the Pilot Study are to:

- Demonstrate that in situ destruction of contaminants is occurring in the subsurface through natural attenuation processes.
- Demonstrate that discharges of wood surface protection chemicals to surface water have been abated.
- Implement risk management measures to protect current and future personnel working on site from taking actions that would result in exposure to unacceptable risk.

During March 2006, the third of three annual groundwater sampling events for the pilot study was conducted.

4.1 FIELD METHODS

Eight monitoring wells (MW-1, MW-2, MW-3, MW-5, MW-7, MW-14, MW-20, and MW-21) were purged and sampled on March 23 and 24, 2006, in conjunction with the routine groundwater monitoring event performed pursuant to the sawmill-area MRP. Field personnel used a peristaltic pump and dedicated tubing to purge groundwater using the low-flow technique at a rate of approximately 300 to 600 milliliters per minute. Measurements of temperature, pH, specific conductance, dissolved oxygen, and oxidation-reduction potential were collected during purging via a flow-through cell and recorded on field sampling records. Copies of the field sampling records are included in Appendix A and the field measurements are summarized in Table 6.

Field personnel collected the groundwater samples after of the monitored water quality parameters stabilized to within approximately 10 percent for: specific conductance, dissolved oxygen, and oxidation-reduction potential; 0.05 pH units for pH; and 1 degree Celsius for temperature. Groundwater samples were collected from the peristaltic pump and tubing in laboratory-supplied containers, which were labeled and placed in an ice-cooled, insulated chest for transport to the laboratories for analysis. Chain-of-custody records were completed for the samples and accompanied the samples until received by the laboratories. Copies of the chain-of-custody records for the groundwater samples are included in Appendix B.

An additional groundwater sample was collected from monitoring well MW-21 and submitted to the laboratories as a blind duplicate sample, labeled MW-A-200603. This sample also was placed in laboraties-supplied containers and sent to the laboratories as described above.

4.2 LABORATORY METHODS

Groundwater samples collected from the monitoring wells were analyzed at the following laboratories: Alpha; Friedman & Bruya, Inc. (Friedman & Bruya), of Seattle, Washington; Frontier Analytical Laboratory (Frontier), of El Dorado, California; Severn Trent Laboratories, Inc. (STL), of Pleasanton, California; and K Prime, Inc. of Santa Rosa, California. These laboratories are all certified by the California Department of Health Services for laboratory chemical analysis. Groundwater samples were analyzed as follows:

- Natural attenuation parameters: Total organic carbon (EPA Method 415.1); calcium and magnesium (EPA Method 200.7); alkalinity (Standard Method 2320B); chloride, nitrate, and sulfate (EPA Method 300.0); iron (II) and manganese (II) (EPA Method 6010B); and dissolved methane and carbon dioxide (RSK 175).
- Pentachlorophenol and breakdown products, including tetrachlorophenols, trichlorophenols, dichlorophenols, and chlorophenols (EPA Method 8270 Selective Ion Monitoring [SIM]).
- Phenol (EPA Method 8270 SIM).
- Dioxins and furans (EPA Method 1613).

4.3 GROUNDWATER ANALYTICAL RESULTS

Copies of the laboratory analytical reports and chain-of-custody records for pilot study groundwater samples are included in Appendix B. Table 6 summarizes the results for field and geochemical parameters; Table 7 and Figure 8 (which includes PCP results by the Canadian Pulp Method) summarize the results for chlorinated phenols and phenol; and Table 8 summarizes the results for dioxins and furans.

PCP was detected in three wells (MW-2, MW-7, and MW-21). The highest concentration of PCP was detected in the samples collected from monitoring well MW-21 (7,700 μ g/L and 8,000 μ g/L in the primary and duplicate sample, respectively). The detected concentration of PCP in MW-21 is slightly higher than in previous sampling events. PCP was detected in monitoring well MW-7 at a concentration of 1,200 μ g/l. The detected concentration of PCP in MW-7 is significantly lower than in previous sampling events. PCP was detected in the sample collected from monitoring well MW-2 at a concentration of 2 μ g/L.

Consistent with the first and second pilot study sampling events in March 2004 and March 2005, PCP degradation products (tetra-, tri-, di-, and chlorophenols) were detected in groundwater samples from wells MW-7 and MW-21. No PCP degradation products were detected in wells MW-1, MW-2, MW-3, MW-5, MW-14, and MW-20. In the sample collected from monitoring well MW-7, tetrachlorophenol concentrations ranged from 4 to 24 μ g/L, trichlorophenol concentrations ranged from non-detect to 15 μ g/L, dichlorophenol concentrations ranged from non-detect to 41 μ g/L, and chlorophenol ranged from non-detect to 37 μ g/L. Phenol was not detected in the groundwater sample from MW-7.

In the sample collected from monitoring well MW-21 (located downgradient of MW-7), tetrachlorophenol concentrations ranged from 17 to 180 μ g/L, trichlorophenol concentrations ranged from non-detect to 270 μ g/L, dichlorophenol concentrations ranged from non-detect to 450 μ g/L, and chlorophenol concentrations ranged from non-detect to 700 μ g/L. Phenol was detected in the sample from well MW-21 at concentrations of 1.8 μ g/L and 1.9 μ g/L (for primary and duplicate samples, respectively).

Concentrations of dioxins and furans, which refer to a complex mixture of various dioxin and furan congeners, are generally summarized in terms of their 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) toxic equivalency (TEQ) based on toxic equivalency factors adopted by the California Environmental Protection Agency's Office of Environmental Health Hazard Assessment (Cal-EPA, 2003). TEQ results for groundwater samples analyzed for dioxins and furans ranged from 0 to 79 picograms per liter (pg/L; parts per quadrillion), with only one sample showing detections greater than 1 pg/L (MW-20 at 79 pg/L).

4.4 LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed the laboratory data generated for the pilot study groundwater sampling as discussed in Appendix C. Based on our review, the data generated during this reporting period for the pilot study sampling event appear to be accurate and representative.

5.0 WASTEWATER DISPOSAL

The purge water and equipment wash water generated by the environmental activities conducted during March 2006 and discussed herein were placed in three steel, 55-gallon drums and labeled. The drums, which consisted of only one that was completely filled during these activities and two drums that were partially filled during previous activities, are being temporarily stored at the site. The full drums will be disposed of by SPI in accordance with applicable regulations.

6.0 FUTURE MONITORING AND SAMPLING SCHEDULE

For both the sawmill area and truck shop area, the next semi-annual groundwater monitoring event will be performed in August or September 2006.

7.0 REFERENCES

- Cal-EPA, 2003, Adoption of the Revised Toxic Equivalency Factors (TEFWHO-97) for PCDDs, PCDFs, and Dioxin-like PCBs (memorandum), Office of Environmental Health Hazard Assessment, August 29.
- EnviroNet Consulting (EnviroNet), 2001, Report on Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, Arcata, California, October 23.
- EnviroNet, 2002a, Report on Recent Hydrogeologic Investigation at Sierra-Pacific Industries, Arcata Division Sawmill, Arcata, California, April 19.
- EnviroNet, 2002b, *Interim Feasibility Study to Remediate Chlorophenols in Soil and Groundwater*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, May 1.
- EnviroNet, 2003, Results of the Remedial Investigation for Sierra Pacific Industries, Arcata Division Sawmills, Arcata, California, May 1.
- Geomatrix, 2003, *Report on Interim Remedial Measure: Source Area Removal*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, December 1.
- Geomatrix, 2004a, *Monitoring Wells MW-20 and MW-21 Installation and Soil Sampling Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 7.
- Geomatrix, 2004b, *Pilot Study Work Plan for Implementation of Proposed Remedial Action*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, April 29.
- Geomatrix, 2005a, *Work Plan for Installation of Monitoring Wells and Piezometer*, Sierra Pacific Industries, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, May 20.
- Geomatrix, 2005b, *Groundwater Monitoring and Progress Report September 2005 Sampling Event*, Sierra Pacific Industries, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, October 28.
- Geomatrix, 2006, *Truck Shop Area Monitoring Wells and Piezometers Installation and Sampling Report*, Sierra Pacific Industries, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, January 27.
- MFG, Inc. (MFG), 2003a, *Interim Remedial Measures Report*, Sierra Pacific Industries Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, June 10.
- MFG, 2003b, *Waste Oil Underground Storage Tank Investigation and Closure Report*, Sierra Pacific Industries Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, June 10.

- MFG and Geomatrix, 2003, *Third Quarter 2003 Groundwater Monitoring Report*, Arcata Division Sawmill, prepared for Sierra Pacific Industries, Arcata, California, November 3.
- MFG and Geomatrix, 2004, Former Waste Oil Underground Storage Tank Additional Investigation Report, Arcata Division Sawmill, Sierra Pacific Industries, Arcata, California, March 30.
- U.S. Environmental Protection Agency (US EPA), 1999, *Contract Laboratory Program National Functional Guidelines for Organic Data Review*, Office of Emergency and Remedial Response, October.
- U.S. EPA, 2002, *National Functional Guidelines for Chlorinated Dioxin/Furan Data Review*, Analytical Operations/Data Quality Center (AOC), August.
- U.S. EPA, 2004, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review Final, Office of Emergency and Remedial Response, July.

MONITORING WELL CONSTRUCTION DETAILS 1

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Well No. Shallow We	Date Installed	Total Boring Depth (ft bgs)	Total Well Depth (ft bgs)	Well Diameter (inches)	Latitude ²	Longitude ²	Ground Level Elevation ² (ft msl)	Top of Casing Elevation ² (ft msl)	Screened Interval (ft bgs)	Screen Slot Size (inches)	Filter Pack Interval (ft bgs)	Bentonite Seal Interval (ft bgs)	Surface Seal Interval ³ (ft bgs)
MW-1	5-Mar-02	8	8	2	40.8661595	124.1521395	10.12	9.69	2.0 - 8.0	0.01	1.5 – 8.0	1.0 – 1.5	0 – 1.0
MW-2	5-Mar-02	9	8	2	40.8661024	124.1525276	10.41	9.61	2.0 - 8.0	0.01	1.5 – 9.0	1.0 – 1.5	0 - 1.0
MW-3	5-Mar-02	8.5	8	2	40.8662689	124.1530739	11.67	11.22	2.0 - 8.0	0.01	1.5 – 8.5	1.0 – 1.5	0 – 1.0
MW-4	5-Mar-02	8	8	2	40.8662303	124.1533599	11.17	10.74	2.0 - 8.0	0.01	1.5 – 8.0	1.0 – 1.5	0 - 1.0
MW-5	7-Mar-02	8	8	2	40.8660945	124.1536734	11.26	10.74	2.0 - 8.0	0.01	1.5 – 8.0	1.0 – 1.5	0 - 1.0
MW-6	7-Mar-02	8	8	2	40.8660710	124.1531061	10.13	9.83	2.0 - 8.0	0.01	1.5 – 8.0	1.0 – 1.5	0 - 1.0
MW-7	7-Mar-02	8	8	2	40.8659980	124.1531187	10.09	9.74	2.0 - 8.0	0.01	1.5 – 8.0	1.0 – 1.5	0 - 1.0
MW-8	8-Mar-02	8	8	2	40.8657492	124.1535343	10.55	10.33	2.0 - 8.0	0.01	1.5 – 8.0	1.0 – 1.5	0 - 1.0
MW-9	8-Mar-02	8	8	2	40.8657520	124.1532218	10.36	9.91	2.0 - 8.0	0.01	1.5 – 8.0	1.0 – 1.5	0 - 1.0
MW-10	11-Nov-02	9.5	8	2	40.8656910	124.1530670	10.08	9.85	2.0 - 8.0	0.01	1.5 – 9.5	1.0 – 1.5	0 - 1.0
MW-11	12-Nov-02	8.5	8	2	40.8655740	124.1533817	10.51	10.28	2.0 - 8.0	0.01	1.5 – 8.5	1.0 – 1.5	0 - 1.0
MW-12	12-Nov-02	9.5	8	2	40.8656625	124.1537231	11.01	10.76	2.0 - 8.0	0.01	1.5 – 9.5	1.0 – 1.5	0 – 1.0
MW-14	13-Nov-02	8	8	2	40.8657622	124.1523580	9.60	9.15	2.0 - 8.0	0.01	1.5 – 8.0	1.0 – 1.5	0 – 1.0
MW-17	14-Nov-02	9	8	2	40.8656690	124.1526420	9.46	9.16	2.0 - 8.0	0.01	1.5 – 9.0	1.0 – 1.5	0 – 1.0
MW-18	13-Nov-02	9.5	8	4	40.8657448	124.1531649	10.12	9.92	2.0 - 8.0	0.01	1.5 – 9.5	1.0 – 1.5	0 – 1.0
MW-20 ⁴	23-Jan-04	8	7	4	40.8658416	124.1532563	10.92	11.87	3.2 - 6.8	0.01	2.0 - 7.0	1.0 - 2.0	0 – 1.0
MW-21	12-Feb-04	8.3	8.3	0.75	40.8660161	124.1530089	10.11	12.89	2.1 – 8.1	0.01	1.5 – 8.3	1.0 – 1.5	0 – 1.0
MW-22	1-Aug-05	10	9.5	2	40.8631428	124.1555472	15.37	15.12	3.5 – 9.0	0.02	3.0 – 10	2.5 – 3.0	0 – 2.5
MW-23	1-Aug-05	10	9.5	2	40.8632724	124.1553765	15.34	15.11	2.5 - 9.0	0.02	2.0 - 10	1.5 - 2.0	0 – 1.5
P-24	1-Aug-05	10	9.5	2	40.8634773	124.1557306	15.56	15.33	3.5 - 9.0	0.02	3.0 - 10	2.5 - 3.0	0 - 2.5
P-25	1-Aug-05	10	9.5	2	40.8632884	124.1556166	16.04	15.75	3.5 - 9.0	0.02	3.0 - 10	2.5 - 3.0	0 - 2.5
Deep Wells	8				1	1					-		
MW-13D	12-Nov-02	21	20	2	40.8660809	124.1525231	10.26	9.96	15.0 - 20.0	0.01	13.5 - 21.0	12.0 - 13.5	0 - 12.0
MW-15D	13-Nov-02	21	20	2	40.8662658	124.1528255	11.59	11.19	15.0 - 20.0	0.01	14.0 - 21.0	12.0 – 14.0	0 - 12.0
MW-16D	14-Nov-02	21.5	20	2	40.8655571	124.1530363	10.13	9.83	15.0 – 20.0	0.01	14.0 - 21.5	12.0 – 14.0	0 – 12.0
MW-19D	14-Nov-02	21.5	20	2	40.8662419	124.1532744	11.21	11.06	15.0 - 20.0	0.01	14.0 - 21.0	12.0 - 14.0	0 - 12.0

Notes:

- 1. Construction details for wells MW-1 through MW-9 were obtained from Report on Recent Hydrogeologic Investigations at Sierra-Pacific Industries, Arcata Division Sawmill, dated April 19, 2002 prepared by Environet Consulting. Construction details for wells MW-10 through MW-19D were obtained from Results of the Remedial Investigation for Sierra Pacific Industries Arcata Division Sawmills, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting. Construction details for wells MW-20 and MW-21 were obtained from the Monitoring Wells MW-20 and MW-21 Installation and Sampling Report dated April 7, 2004 prepared by Geomatrix, and details for wells and piezometers MW-22 through P-25 were obtained from the Truck Shop Area Monitoring Wells and Piezometers Installation and Sampling Report dated January 27, 2006 prepared by Geomatrix.
- 2. Monitoring wells MW-1 through MW-21 were resurveyed by Omsberg and Company of Eureka, California on February 13, 2004, and monitoring wells and piezometers MW-22 through P-25 were surveyed by Omsberg and Preston on August 11, 2005; latitude and longitude were surveyed relative to North American Datum (NAD) of 1983 and elevations were surveyed relative to North American Vertical Datum (NAVD) of 1988.
- 3. Surface seal interval consists of the concrete surface completion and a neat cement sanitary seal, if applicable.
- 4. Well installed on a raised concrete pad of the former green chain. Depth measurements (ft bgs) are relative to the local ground surface of the concrete pad, which is approximately 1 foot above the grade of the surrounding ground surface.

Abbreviations:

ft bgs = feet below ground surface ft msl = feet mean sea level

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
	Date	(II NA V D 00)	(It DIVIF)	(It NAVD 00)
Shallow Wells	14.14 00	0.56	5.21	4.05
MW-1	14-Mar-02	9.56	5.31	4.25
	18-Jul-02	9.56	4.52	5.04
	16-Sep-02	9.56	4.37	5.19
	02-Dec-02 18-Mar-03	9.56 9.56	4 18 4.09	5 38 5.47
	31-Mar-03	9.56	4.48	5.08
	21-May-03	9.56	4.66	4.90
	•	9.56	4.55	5.01
	27-Aug-03 03-Nov-03			
		9.56	4.20	5.36
	23-Mar-04	9.69	4.47	5.22
	17-May-04	9.69	4.57	5.12
	30-Aug-04	9.69	4.55	5.14
	14-Dec-04	9.69	4.30	5.39
	09-Mar-05	9.69	4.13	5.56
	07-Sep-05	9.69	4.58	5.11
	22-Mar-06	9.69	4.17	5.52
MW-2	14-Mar-02	9.49	4.52	4.97
	18-Jul-02	9.49	5.43	4.06
	16-Sep-02	9.49	5.28	4.21
	02-Dec-02	9.49	5.17	4.32
	18-Mar-03	9.49	5.16	4.33
	31-Mar-03	9.49	5.43	4.06
	21-May-03	9.49	5.45	4.04
	27-Aug-03	9.49	5.09	4.40
	03-Nov-03	9.49	5.17	4.32
	23-Mar-04	9.61	5.31	4.30
	17-May-04	9.61	5.43	4.18
	30-Aug-04	9.61	5.07	4.54
	14-Dec-04	9.61	5.10	4.51
	09-Mar-05	9.61	5.22	4.39
	07-Sep-05	9.61	5.36	4.25
	22-Mar-06	9.61	5.27	4.34
MW-3	14-Mar-02	11.14	2.19	8.95
	18-Jul-02	11.14	2.79	8.35
	16-Sep-02	11.14	2.96	8.18
	02-Dec-02	11.14	2.75	8.39
	18-Mar-03	11.14	2.30	8.84
	31-Mar-03	11.14	1.96	9.18
	21-May-03	11.14	2.19	8.95
	27-Aug-03	11.14	2.08	9.06
	03-Nov-03	11.14	2.35	8.79
	23-Mar-04	11.22	2.24	8.98
	17-May-04	11.22	2.25	8.97
	30-Aug-04	11.22	2.42	8.80
	14-Dec-04	11.22	2.79	8.43
	09-Mar-05	11.22	2.77	8.45
	07-Sep-05	11.22	2.98	8.24
	22-Mar-06	11.22	2.13	9.09

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-7	14-Mar-02	9.68	0.73	8.95
	18-Jul-02	9.68	1.15	8.53
	16-Sep-02	9.68	1.37	8.31
	02-Dec-02	9.68	1.19	8.49
	18-Mar-03	9.68	0.75	8.93
	31-Mar-03	9.68	0.26	9.42
	21-May-03	9.68	0.45	9.23
	27-Aug-03	9.68	0.61	9.07
	03-Nov-03	9.68	1.13	8.55
	23-Mar-04	9.74	0.44	9.30
	17-May-04	9.74	0.50	9.24
	30-Aug-04	9.74	0.84	8.90
	14-Dec-04	9.74	1.04	8.70
	09-Mar-05	9.74	0.96	8.78
	07-Sep-05	9.74	1.32	8.42
	22-Mar-06	9.74	0.42	9.32
MW-8	14-Mar-02	10.30	0.92	9.38
	18-Jul-02	10.30	1.24	9.06
	16-Sep-02	10.30	1.52	8.78
	02-Dec-02	10.30	1.34	8.96
	18-Mar-03	10.30	0.95	9.35
	31-Mar-03	10.30	0.29	10.01
	21-May-03	10.30	0.49	9.81
	27-Aug-03	10.30	0.91	9.39
	03-Nov-03	10.30	1.36	8.94
	23-Mar-04	10.33	0.57	9.76
	17-May-04	10.33	0.54	9.79
	30-Aug-04	10.33	0.94	9.39
	14-Dec-04	10.33	1.29	9.04
	09-Mar-05	10.33	1.07	9.26
	07-Sep-05	10.33	1.41	8.92
	22-Mar-06	10.33	0.70	9.63
MW-9	14-Mar-02	9.86	0.71	9.15
	18-Jul-02	9.86	1.13	8.73
	16-Sep-02	9.86	1.40	8.46
	02-Dec-02	9.86	1.18	8.68
	18-Mar-03	9.86	0.79	9.07
	31-Mar-03	9.86	0.11	9.75
	21-May-03	9.86	0.30	9.56
	27-Aug-03	9.86	0.81	9.05
	03-Nov-03	9.86	1.19	8.67
	23-Mar-04	9.91	0.40	9.51
	17-May-04	9.91	0.38	9.53
	30-Aug-04	9.91	0.89	9.02
	14-Dec-04	9.91	1.05	8.86
	09-Mar-05	9.91	0.85	9.06
	07-Sep-05	9.91	1.27	8.64
	22-Mar-06	9.91	0.45	9.46

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-10	02-Dec-02	9.80	1.35	8.45
	18-Mar-03	9.80	0.95	8.85
	31-Mar-03	9.80	0.30	9.50
	21-May-03	9.80	0.52	9.28
	27-Aug-03	9.80	1.02	8.78
	03-Nov-03	9.80	1.43	8.37
	23-Mar-04	9.85	0.70	9.15
	17-May-04	9.85	0.61	9.24
	30-Aug-04	9.85	1.13	8.72
	14-Dec-04	9.85	1.24	8.61
	09-Mar-05	9.85	1.05	8.80
	07-Sep-05	9.85	1.43	8.42
	22-Mar-06	9.85	0.90	8.95
MW-11	02-Dec-02	10.26	1.55	8.71
	18-Mar-03	10.26	1.12	9.14
	31-Mar-03	10.26	0.40	9.86
	21-May-03	10.26	0.64	9.62
	27-Aug-03	10.26	1.19	9.07
	03-Nov-03	10.26	1.56	8.70
	23-Mar-04	10.28	0.75	9.53
	17-May-04	10.28	0.69	9.59
	30-Aug-04	10.28	1.20	9.08
	14-Dec-04	10.28	1.44	8.84
	09-Mar-05	10.28	1.14	9.14
	07-Sep-05	10.28	1.57	8.71
	22-Mar-06	10.28	0.79	9.49
MW-12	02-Dec-02	10.73	1.56	9.17
	18-Mar-03	10.73	1.15	9.58
	31-Mar-03	10.73	0.55	10.18
	21-May-03	10.73	0.70	10.03
	27-Aug-03	10.73	1.12	9.61
	03-Nov-03	10.73	1.68	9.05
	23-Mar-04	10.76	0.87	9.89
	17-May-04	10.76	0.76	10.00
	30-Aug-04	10.76	1.13	9.63
	14-Dec-04	10.76	1.55	9.21
	09-Mar-05	10.76	1.27	9.49
	07-Sep-05	10.76	1.57	9.19
	22-Mar-06	10.76	0.98	9.78
MW-14	02-Dec-02	9.02	2.40	6.62
	18-Mar-03	9.02	2.21	6.81
	31-Mar-03	9.02	1.77	7.25
	21-May-03	9.02	1.69	7.33
	27-Aug-03	9.02	2.27	6.75
	03-Nov-03	9.02	2.52	6.50
	23-Mar-04	9.15	2.08	7.07
	17-May-04	9.15	2.15	7.00
	30-Aug-04	9.15	2.48	6.67
	14-Dec-04	9.15	2.30	6.85
	09-Mar-05	9.15	2.10	7.05
	07-Sep-05	9.15	2.37	6.78
	22-Mar-06	9.15	2.38	6.77

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-17	02-Dec-02	8.98	1.27	7.71
11211 17	18-Mar-03	8.98	0.94	8.04
	31-Mar-03	8.98	0.32	8.66
	21-May-03	8.98	0.58	8.40
	27-Aug-03	8.98	1.06	7.92
	03-Nov-03	8.98	1.30	7.68
	23-Mar-04	9.16	0.83	8.33
	17-May-04	9.16	0.74	8.42
	30-Aug-04	9.16	1.21	7.95
	14-Dec-04	9.16	1.17	7.99
	09-Mar-05	9.16	1.00	8.16
	07-Sep-05	9.16	1.35	7.81
	22-Mar-06	9.16	0.79	8.37
MW-18	02-Dec-02	9.53	0.94	8.59
11111 10	18-Mar-03	9.53	0.52	9.01
	31-Mar-03	9.53	_3	NC
	21-May-03	9.53	0.05	9.48
	27-Aug-03	9.53	0.55	8.98
	03-Nov-03	9.53	0.95	8.58
	23-Mar-04	9.92	0.52	9.40
	17-May-04	9.92	0.47	9.45
	30-Aug-04	9.92	0.98	8.94
	14-Dec-04	9.92	1.13	8.79
	09-Mar-05	9.92	0.94	8.98
	07-Sep-05	9.92	1.36	8.56
	22-Mar-06	9.92	0.59	9.33
MW-20	23-Mar-04	11.87	2.36	9.51
	17-May-04	11.87	2.35	9.52
	30-Aug-04	11.87	2.70	9.17
	14-Dec-04	11.87	2.80	9.07
	09-Mar-05	11.87	2.72	9.15
	07-Sep-05	11.87	3.06	8.81
	22-Mar-06	11.87	2.22	9.65
MW-21	23-Mar-04	12.89	3.97	8.92
	17-May-04	12.89	3.99	8.90
	30-Aug-04	12.89	4.23	8.66
	14-Dec-04	12.89	4.36	8.53
	09-Mar-05	12.89	4.35	8.54
	07-Sep-05	12.89	4.65	8.24
	22-Mar-06	12.89	3.79	9.10
MW-22	08-Sep-05	15.12	5.76	9.36
	23-Mar-06	15.12	4.38	10.74
MW-23	08-Sep-05	15.11	5.44	9.67
	23-Mar-06	15.11	3.99	11.12
P-24	08-Sep-05	15.33	4.84	10.49
	23-Mar-06	15.33	2.69	12.64
P-25	08-Sep-05	15.75	5.47	10.28
	23-Mar-06	15.75	3.40	12.35

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
Deep Wells			<u>'</u>	
MW-13D	02-Dec-02	9.84	4.18	5.66
	18-Mar-03	9.84	4.21	5.63
	31-Mar-03	9.84	4.26	5.58
	21-May-03	9.84	4.52	5.32
	27-Aug-03	9.84	4.45	5.39
	03-Nov-03	9.84	4.30	5.54
	23-Mar-04	9.96	4.42	5.54
	17-May-04	9.96	4.54	5.42
	30-Aug-04	9.96	4.57	5.39
	14-Dec-04	9.96	4.56	5.40
	09-Mar-05	9.96	4.26	5.70
	07-Sep-05	9.96	4.55	5.41
	22-Mar-06	9.96	3.98	5.98
MW-15D	02-Dec-02	11.08	5.31	5.77
	18-Mar-03	11.08	5.44	5.64
	31-Mar-03	11.08	5.46	5.62
	21-May-03	11.08	5.74	5.34
	27-Aug-03	11.08	5.71	5.37
	03-Nov-03	11.08	5.51	5.57
	23-Mar-04	11.19	5.66	5.53
	17-May-04	11.19	5.77	5.42
	30-Aug-04	11.19	5.83	5.36
	14-Dec-04	11.19	5.75	5.44
	09-Mar-05	11.19	5.48	5.71
	07-Sep-05	11.19 11.19	5.83	5.36
MW-16D	22-Mar-06 02-Dec-02	9.80	5.18 3.99	6.01 5.81
MW-10D	18-Mar-03	9.80	4.17	5.63
	31-Mar-03	9.80	3.91	5.89
	21-May-03	9.80	4.11	5.69
	27-Aug-03	9.80	3.95	5.85
	03-Nov-03	9.80	4.26	5.54
	23-Mar-04	9.83	4.01	5.82
	17-May-04	9.83	4.13	5.70
	30-Aug-04	9.83	4.13	5.70
	14-Dec-04	9.83	4.38	5.45
	09-Mar-05	9.83	4.22	5.61
	07-Sep-05	9.83	4.23	5.60
	22-Mar-06	9.83	3.76	6.07
MW-19D	02-Dec-02	11.00	4.31	6.69
	18-Mar-03	11.00	4.23	6.77
	31-Mar-03	11.00	4.02	6.98
	21-May-03	11.00	4.22	6.78
	27-Aug-03	11.00	4.26	6.74
	03-Nov-03	11.00	4.61	6.39
	23-Mar-04	11.06	4.13	6.93
	17-May-04	11.06	4.63	6.43
	30-Aug-04	11.06	4.60	6.46
	14-Dec-04	11.06	4.82	6.24
	09-Mar-05	11.06	4.46	6.60
	07-Sep-05	11.06	4.59	6.47
	22-Mar-06	11.06	4.26	6.80

SUMMARY OF WATER LEVEL MEASUREMENTS

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
MW-4	14-Mar-02	10.71	1.52	9.19
	18-Jul-02	10.71	1.84	8.87
	16-Sep-02	10.71	2.04	8.67
	02-Dec-02	10.71	1.80	8.91
	18-Mar-03	10.71	1.52	9.19
	31-Mar-03	10.71	0.93	9.78
	21-May-03	10.71	1.18	9.53
	27-Aug-03	10.71	1.36	9.35
	03-Nov-03	10.71	1.64	9.07
	23-Mar-04	10.74	1.17	9.57
	17-May-04	10.74	1.17	9.57
	30-Aug-04	10.74	1.37	9.37
	14-Dec-04	10.74	2.21	8.53
	09-Mar-05	10.74	1.95	8.79
	07-Sep-05	10.74	2.08	8.66
	22-Mar-06	10.74	1.55	9.19
MW-5	14-Mar-02	10.69	0.95	9.74
	18-Jul-02	10.69	1.26	9.43
	16-Sep-02	10.69	1.35	9.34
	02-Dec-02	10.69	1.23	9.46
	18-Mar-03	10.69	0.87	9.82
	31-Mar-03	10.69	0.63	10.06
	21-May-03	10.69	0.69	10.00
	27-Aug-03	10.69	0.84	9.85
	03-Nov-03	10.69	0.92	9.77
	23-Mar-04	10.74	0.62	10.12
	17-May-04	10.74	0.78	9.96
	30-Aug-04	10.74	0.71	10.03
	14-Dec-04	10.74	1.50	9.24
	09-Mar-05	10.74	1.40	9.34
	07-Sep-05	10.74	1.43	9.31
	22-Mar-06	10.74	0.95	9.79
MW-6	14-Mar-02	9.77	0.85	8.92
	18-Jul-02	9.77	1.27	8.50
	16-Sep-02	9.77	1.51	8.26
	02-Dec-02	9.77	1.30	8.47
	18-Mar-03	9.77	0.89	8.88
	31-Mar-03	9.77	0.37	9.40
	21-May-03	9.77	0.60	9.17
	27-Aug-03	9.77	0.70	9.07
	03-Nov-03	9.77	1.21	8.56
	23-Mar-04	9.83	0.69	9.14
	17-May-04	9.83	0.78	9.05
	30-Aug-04	9.83	0.99	8.84
	14-Dec-04	9.83	1.25	8.58
	09-Mar-05	9.83	1.17	8.66
	07-Sep-05	9.83	1.47	8.36
	22-Mar-06	9.83	0.56	9.27

SUMMARY OF WATER LEVEL MEASUREMENTS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Well No.	Measurement ¹ Date	MP Elevation ² (ft NAVD 88)	Depth to Water (ft bMP)	Water Level Elevation (ft NAVD 88)
Mad River Slough ⁴	31-Mar-03	15.70	15.15	0.55
	31-Mar-03	15.70	15.84	-0.14
	21-May-03	15.70	17.23	-1.53
	21-May-03	15.70	16.75	-1.05
	27-Aug-03	15.70	16.20	-0.50
	27-Aug-03	15.70	12.60	3.10
	03-Nov-03	15.70	9.63	6.07
	03-Nov-03	15.70	10.53	5.17
	23-Mar-04	15.70	15.00	0.70
	23-Mar-04	15.70	12.16	3.54
	17-May-04	15.70	14.48	1.22
	17-May-04	15.70	12.50	3.20
	30-Aug-04	15.70	15.17	0.53
	30-Aug-04	15.70	12.20	3.50
	14-Dec-04	15.70	12.05	3.65
	14-Dec-04	15.70	9.90	5.80
	09-Mar-05	15.70	9.31	6.39
	09-Mar-05	15.70	8.43	7.27
	07-Sep-05	15.70	16.35	-0.65
	07-Sep-05	15.70	12.95	2.75
	22-Mar-06	15.70	12.55	3.15
	22-Mar-06	15.70	15.80	-0.10

Notes:

- Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by Environet Consulting.
- Monitoring wells surveyed by Omsberg & Company of Eureka, California. Wells MW-1 through MW-21 were resurveyed on February 13, 2004, wells MW-22 through P-25 were surveyed on August 11, 2005; elevations shown are relative to the Northern American Vertical Datum of 1988.
- 3. Water level was above the top of casing measuring point.
- Mad River Slough measuring point on railroad bridge. Water level measurements are obtained before and after the water level measurements in monitoring wells MW-1 through MW-21.

Abbreviations:

ft NAVD 88 = feet above North American Vertical Datum of 1988

ft bMP = feet below measuring point

-- = not measured or sample not collected for analysis

NC = not calculated

SUMMARY OF WATER QUALITY PARAMETERS

			Field Measu	rements ¹		Laboratory Measurement ²
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
Shallow Wells						
	20-Mar-03	14	2,600	6.5		
	22-May-03	14	2,700	6.7		1,400
	27-Aug-03	18	2,500	6.7	1,800	1,400
	04-Nov-03	17	2,400	6.6	1,800	1,300
MW-1	17-May-04	15	2,600	6.3	1,900	1,400
	15-Dec-04	15	3,800	6.6	2,500	
	11-Mar-05	14	2,100	6.5	1,400	
	07-Sep-05	18	2,400	6.5	1,700	
	23-Mar-06	13	2,700	6.5	1,700	
	20-Mar-03	13	2,100	6.2		
	22-May-03	14	1,700	6.4	1,100	860
	27-Aug-03	18	1,500	6.6	1,100	760
	03-Nov-03	16	1,590	6.3	1,100	760
	24-Mar-04	13	1,390	6.3	970	740
MW-2	17-May-04	15	1,400	6.2	980	730
	30-Aug-04	19	1,200	3	850	680
	15-Dec-04	14	1,100	6.4	740	
	11-Mar-05	13	1,200	6.2	790	
	07-Sep-05	18	1,300	6.4	900	
	23-Mar-06	13	1,300	6.4	860	
	20-Mar-03	13	1,100	6.4		
	22-May-03	15	1,000	6.4	630	510
	27-Aug-03	20	1,000	6.5	720	470
	03-Nov-03	16	980	6.6		410
MW-3	17-May-04	16	1,100	6.2	750	510
	15-Dec-04	13	700	6.4	460	
	10-Mar-05	13	600	6.4	390	
	07-Sep-05	19	810	6.4	810	
	23-Mar-06	12	540	6.7	350	
	20-Mar-03	14	830	6.5		
	22-May-03	16	730	6.4	440	420
N037.4	27-Aug-03	21	730	6.5	500	340
MW-4	03-Nov-03	18	760	6.6	520	310
	17-May-04	18	880	6.2	590	360
	15-Dec-04	14	640	6.4	410	

SUMMARY OF WATER QUALITY PARAMETERS

	Date Sampled		Laboratory Measurement ²			
Well No.		Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
	20-Mar-03	14	670	6.6		
	22-May-03	14	690	6.6	410	360
	27-Aug-03	18	670	6.7	450	360
	03-Nov-03	17	660	6.6	450	380
MW-5	17-May-04	15	660	6.3	440	360
	15-Dec-04	15	470	6.4	310	
	10-Mar-05	14	570	6.3	390	
	07-Sep-05	18	660	6.5	450	
	24-Mar-06	11	190	6.6	130	
	20-Mar-03	11	950	6.6		
	22-May-03	14	1,000	6.3	620	430
	27-Aug-03	17	890	6.4	620	410
	04-Nov-03	13	920	6.6	630	430
	24-Mar-04	11	920	6.5	640	410
MW-6	17-May-04	14	930	6.3	640	420
	30-Aug-04	17	880	³	610	430
	15-Dec-04	11	700	6.4	460	
	11-Mar-05	11	900	6.7	620	
	07-Sep-05	16	900	6.4	610	
	22-Mar-06	9	990	6.6	650	
	20-Mar-03	11	910	6.6		
	22-May-03	11	960	6.5		460
	27-Aug-03	14	840	6.6	580	400
	03-Nov-03	12	870	6.6	600	460
	24-Mar-04	11	960	6.4		440
MW-7	18-May-04	12	730	6.6	490	370
	30-Aug-04	14	840	3	580	410
	15-Dec-04	11	700	6.4	460	
	09-Mar-05	11	850	6.3	580	
	07-Sep-05	13	920	6.4	630	
	24-Mar-06	10	120	6.7	85	
	18-Mar-03	14	730	6.4		
	21-May-03	16	740	6.3	460	390
	27-Aug-03	21	730	6.2	500	370
	04-Nov-03	17	740	6.4	510	380
	24-Mar-04	14	780	6.2	530	400
MW-8	17-May-04	18	800	6.1	530	390
141 44 -0	30-Aug-04	21	760	³	520	390
	14-Dec-04	14	650		420	
	11-Mar-05	13	800	6.3 6.5	550	
	07-Sep-05	20	810	6.4	540	
	22-Mar-06	12	860	6.5	560	

SUMMARY OF WATER QUALITY PARAMETERS

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
	18-Mar-03	14	820	6.4		
	23-May-03	16	870	6.6	550	400
	27-Aug-03	20	830	6.2	570	350
	04-Nov-03	17	820	6.6	560	350
	24-Mar-04	14	880	6.4		380
MW-9	17-May-04	16	930	6.1	620	380
	30-Aug-04	20	860	3	550	440
	14-Dec-04	13	800	6.4	520	
	11-Mar-05	13	900			
	07-Sep-05	19	920	6.4	620	
	22-Mar-06	12	930	6.6	600	
	18-Mar-03	14	920	6.4		
	23-May-03	17	970	6.7		460
MW 10	27-Aug-03	22	860	6.3	600	400
MW-10	04-Nov-03	18	880	6.6	600	430
	17-May-04	19	920	6.2	610	420
	14-Dec-04	14	700	6.4	450	
	20-Mar-03	14	870	6.4		
	21-May-03	17	890	6.4	560	460
N 637 11	27-Aug-03	23	870	6.2	600	440
MW-11	04-Nov-03	19	880	6.6	600	450
	17-May-04	18	880	6.2	590	430
	14-Dec-04	15	740 6.4		480	
	18-Mar-03	15	830	6.3		
	21-May-03	18	840	6.1		460
N 6777 1 1 2	27-Aug-03	23	870	6.2	600	480
MW-12	04-Nov-03	18	920	6.5	630	480
	17-May-04	20	900	6.0	600	490
	14-Dec-04	14	710	6.4	460	
	20-Mar-03	14	3,200	6.7		
	22-May-03	15	3,400	6.6		2,100
	27-Aug-03	20	3,600	6.6	2,300	1,900
	04-Nov-03	16	3,300	6.6	2,500	2,100
MW-14	17-May-04	17	2,800			1,800
	15-Dec-04	14	2,500			
	09-Mar-05	13	2,400			
	07-Sep-05	20	2,700	6.4	1,600 2,000	
	23-Mar-06	13	2,900	6.7	1,900	

SUMMARY OF WATER QUALITY PARAMETERS

			Laboratory Measurement ²			
Well No.	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
	20-Mar-03	13	980	6.4		
	22-May-03	15	1,000	6.5		450
MW-17	27-Aug-03	19	860	7.0	600	420
IVI VV - 1 /	04-Nov-03	15	920	6.6	640	450
	17-May-04	15	940	6.5	620	440
	14-Dec-04	12	830	6.4	540	
	18-Mar-03	14	1,000	6.5		
	23-May-03	17	980	6.6	610	640
MW-18	27-Aug-03	23	1,100	6.3	780	520
W - 18	04-Nov-03	17	1,100	6.6	760	490
	17-May-04	19	1,000	6.3	670	430
	14-Dec-04	13	860	6.5	560	
	24-Mar-04	14	420	6.9	280	250
	18-May-04	18	470	6.7	310	280
	30-Aug-04	21	500	3	330	300
MW-20	15-Dec-04	12	370	6.5	240	
	09-Mar-05	13	320	6.6	220	
	07-Sep-05	19	510	6.6	340	
	24-Mar-06	11	310	6.8	200	
	24-Mar-04	12	990	6.3	680	460
	18-May-04	14	1,000	6.3	660	420
	30-Aug-04	16	960	3	660	450
MW-21	15-Dec-04	11	760	6.2	500	
	10-Mar-05	11	930	6.3	640	
	07-Sep-05	15	1,000	6.4	690	
	24-Mar-06	10	1,000	6.6	670	
MW 22	08-Sep-05	19	740	6.6		
MW-22	23-Mar-06	14	720	6.0		
MW-23	08-Sep-05	18	4,400	6.7		
IVI VV -23	23-Mar-06	14	4,100	6.6		
P-24	08-Sep-05	21	1,500	6.2		
P-25	08-Sep-05	18	410	6.1		

SUMMARY OF WATER QUALITY PARAMETERS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

			Laboratory Measurement ²			
Well No. Deep Wells	Date Sampled	Temperature (°C)	Specific Conductance (µmohs/cm)	pH (pH Units)	TDS (mg/L)	TDS (mg/L)
Deep wens	20-Mar-03	14	1,200	6.2		
	22-May-03	14	1,100	6.2		
-	27-Aug-03	15	1,100	6.1	750	690
	04-Nov-03	15	1,000	6.1		580
MW-13D	17-May-04	14	1,000	5.8	700	610
-	17-May-04 15-Dec-04	14	620	6.1	400	
-	11-Mar-05	14	900	6.2	620	
-	22-Mar-06	14	1,200	6.2	770	
	20-Mar-03	13	1,300	6.8		
-	22-May-03	13	1,300	6.8		800
-	27-Aug-03	14	1,300	6.3	900	810
-	04-Nov-03	14	1,300	6.8		790
MW-15D	17-May-04	13	1,400	6.3	930	800
-	15-Dec-04	14	1,000	6.7	650	
-	11-Mar-05	13	1,300	6.8	880	
	22-Mar-06	13	1,300	6.6	840	
	18-Mar-03	14	5,200	7.7		
-	23-May-03	14	5,200	7.6		3,200
-	27-Aug-03	16	5,000	7.4	3,400	3,000
-	04-Nov-03	16	4,800	7.6	3,700	2,800
MW-16D	17-May-04	15	4,600	7.3	3,500	2,800
-	14-Dec-04	16	3,700	7.7	2,400	2,800
-	11-Mar-05	15	4,400	7.7	3,400	
-	22-Mar-06	14	4,400	7.7	2,900	
	20-Mar-03	16	810	6.7	2,900	
	20-Mar-03 22-May-03	16	860	6.6	520	480
	27-Aug-03	17	810	6.5	560	410
MW-19D	03-Nov-03	17	760	6.7	520	370
-		16	840	6.5	560	430
-	17-May-04					430
	15-Dec-04	17	490	6.5	320	

Notes

- 1. Water quality parameters measured in the field using an Ultrameter instrument or a YSI Model 556 instrument; reported measurements recorded towards end of purge after parameters stabilized or from the last purge volume if a well was repeatedly purged dry.
- 2. Water quality parameter analyzed in the laboratory; EPA Method 160.1. Laboratory analysis of TDS was discontinued during the fourth quarter 2004.
- 3. pH meter inoperable.

Abbreviations:

°C = degrees Celsius

 $\mu mhos/cm = micromhos per centimeter at 25 °C$

mg/L = milligrams per liter

-- = not measured or sample not collected for analysis

TDS = total dissolved solids

EPA = U.S. Environmental Protection Agency

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

Concentrations in micrograms per liter (µg/L)								
	D-4-	-	2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	C	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments	
Well Number	Sampled 1	chlorophenol	phenol	phenol	phenol	phenol		
Shallow Wells								
	14-Mar-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	16-Sep-02	1.8	< 1.0	< 1.0	< 1.0	< 1.0		
	03-Oct-02 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	02-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
MW-1	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	04-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample	
	23-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample	
	14-Mar-02	7.4	< 1.0	< 1.0	< 1.0	< 1.0		
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	16-Sep-02	2.5	< 1.0	< 1.0	< 1.0	< 1.0		
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
MW-2	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample	
	23-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample	
	14-Mar-02	1.2	< 1.0	< 1.0	< 1.0	< 1.0		
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	16-Sep-02	5.0	< 1.0	< 1.0	< 1.0	< 1.0		
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
MW-3	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	17-May-04 15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
	13-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

Concentrations in micrograms per liter (µg/L)							
			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	_
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol	
	14-Mar-02	8.6	< 1.0	< 1.0	< 1.0	< 1.0	
l	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	5.7	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-4	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
141 44 -4	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Mar-02	4.3	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	9.1	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	25	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-5	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	duplicate sample
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Mar-02	4.5	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	6.3	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-6	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-6	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled 1	chlorophenol	phenol	phenol	phenol	phenol	
vven rumber	14-Mar-02	31,000	< 1.0	41	650	24	
	18-Jul-02	33,000	< 1.0	< 1.0	990	56	
	16-Sep-02	44,000	< 1.0	< 1.0	920	64	
	03-Dec-02	46,000	< 1.3	76	1,300	52	
	14-Jan-03 ³	51,000	2.4	< 1.0	970	52	
	20-Mar-03	19,000	< 1.0	36	460	22	
	22-May-03	19,000	< 1.0	< 1.0	470	< 100	
	22-May-03	16,000	< 1.0	< 1.0	400	< 100	duplicate sample
	22-May-03	14,000	< 1.0	< 1.0	400	< 100	filtered
	27-Aug-03	31,000	< 1.5	41	710	39	
	27-Aug-03	18,000	< 1.0	28	450	26	duplicate sample
	3-Nov-03	28,000	< 5.0	36	580	35	bailer sample / unfiltered
MW-7	3-Nov-03	31,000	< 5.0	47	740	43	bailer sample / filtered
	3-Nov-03	20,000	< 5.0	28	450	24	low flow sample / unfiltered
	3-Nov-03	14,000	< 5.0	19	300	17	low flow sample / filtered
	24-Mar-04	19,000	< 1.5	19	450	19	
	24-Mar-04	7,400	< 1.0	8.7	150	9.9	duplicate sample
	18-May-04	25,000	< 2.5	86	480	41	
	30-Aug-04	13,000	< 1.0	54	200	17	
	15-Dec-04	22,000	1.7	57	310	42	
	09-Mar-05	24,000	< 1.0	39	420	32	low flow sample
	07-Sep-05	16,000	< 1.0	19	280	16	
	07-Sep-05	13,000	< 1.0	17	230	14	duplicate sample
	24-Mar-06	1,900	< 1.0	8.7	41	3.7	
	14-Mar-02	22	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Jul-02	31	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	4.8	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-8	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

		Сопсен		ncrograms po		i	
Manitanina	Date	Penta-	2,4,6- trichloro-	2,3,5,6-	2,3,4,6- tetrachloro-	2,3,4,5- tetrachloro-	Comments
Monitoring				tetrachloro-			Comments
Well Number	Sampled 1	chlorophenol	phenol	phenol	phenol	phenol	
	14-Mar-02	94	3.1	21	130	5.5	
	18-Jul-02	2.1	< 1.0	< 1.0	< 1.0	< 1.0	
	16-Sep-02	3.1	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-9	04-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	24-Mar-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-10	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-11	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	21-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-12	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

Concentrations in micrograms per liter (μg/L) 2,4,6- 2,3,5,6- 2,3,4,6- 2,3,4,5- Comments												
			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-						
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments					
Well Number	Sampled ¹	chlorophenol	phenol	phenol	phenol	phenol						
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
MW-14	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	09-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample					
	23-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample					
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
MW-17	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
MW-18	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	24-Mar-04	35	< 1.0	< 1.0	5.1	3.8						
	18-May-04	3.6	< 1.0	< 1.0	1.1	< 1.0						
	30-Aug-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
MW-20	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	09-Mar-05	71	3.4	27	< 1.0	4.6	low flow sample					
	07-Sep-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	low flow sample					
	24-Mar-04	800	< 1.0	6.3	17	12						
	18-May-04	1,900	< 1.0	11	36	11						
	18-May-04	670	< 1.0	3.5	16	4.4	duplicate sample					
	30-Aug-04	2,700	< 1.0	6.4	66	5.4	•					
	30-Aug-04	2,800	< 1.0	6.9	68	5.5	duplicate sample					
	15-Dec-04	3,200	< 1.0	34	50	5.5	* *					
MW-21	15-Dec-04	8,100	2.1	64	120	8.3	duplicate sample					
IVI VV -∠I	10-Mar-05	4,700	< 1.0	8.1	31	< 1.5	low flow sample					
	10-Mar-05	4,600	2.7	26	86	6.5	low flow sample / duplicate					
	07-Sep-05	4,900	< 1.0	11	170	4.8	<u>r</u>					
	24-Mar-06	13,000	1.5	41	180	8.9	low flow sample					
	24-Mar-06	14,000	1.4	41	190	8.8	low flow sample / duplicate					

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS (CANADIAN PULP METHOD)

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

			2,4,6-	2,3,5,6-	2,3,4,6-	2,3,4,5-	
Monitoring	Date	Penta-	trichloro-	tetrachloro-	tetrachloro-	tetrachloro-	Comments
Well Number	Sampled 1	chlorophenol	phenol	phenol	phenol	phenol	
Deep Wells	•	-	•	•		-	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-13D	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-15D	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	1.3	< 1.0	< 1.0	< 1.0	< 1.0	
	18-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	23-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-16D	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	14-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	11-Mar-05	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-Mar-06	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	03-Dec-02	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	20-Mar-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	22-May-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-19D	27-Aug-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	4-Nov-03	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	17-May-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	15-Dec-04	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Notes:

- Data prior to March 18, 2003 were obtained from Results of the Remedial Investigation for Sierra Pacific Industries, Arcata Division Sawmill, Arcata, California, dated January 30, 2003, prepared by EnviroNet Consulting.
- 2. Confirmation sample collected due to detection of pentachlorophenol on September 16, 2002.
- 3. Sample also contained 280 mg/L of 2,3,4-trichlorophenol and 190 mg/L of 2,4,5-trichlorophenol. Abbreviation:
- < = target analyte was not detected at or above the laboratory reporting limit shown.
- -- = not measured or sample not collected for analysis.

LABORATORY ANALYTICAL RESULTS FOR TRUCK SHOP MONITORING WELLS $^{\rm 1}$

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Monitoring Well Number	Date Sampled	TPH as Gasoline (µg/L)	TPH as Diesel ² (μg/L)	TPH as Motor Oil ² (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	VOCs ³ (μg/L)		
									acetone 28		
	9/8/2005	<100	< 50	<250					toluene 23	<10	ND^4
MW-22									acetone 36		
	9/8/2005 ⁵	<100	< 50	<250					toluene 29	<10	ND
	3/23/2006	66	< 50	<175	<1	16	<1	<3			
MW-23	9/8/2005	<100	< 50	280					ND	<10	ND
IVI W -23	3/23/2006	< 50	< 50	<175	<1	<1	<1	<3			
P-24	9/8/2005	<100	76	350					ND	<10	ND
P-25	9/8/2005	330	80	750					toluene 130	<10	ND

Notes:

- 1. Samples analyzed by Friedman & Bruya, Inc., in Seattle, Washington, for total petroleum hydrocarbons (TPH) as gasoline,
 TPH as diesel, and TPH as motor oil by EPA Method 8015 Modified; for benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021B; for volatile
 organic compounds (VOCs) by EPA Method 8260B; for phenol by EPA Method 8270C; and for polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270C SIM.
- 2. Sample extracts passed through a silica gel column prior to analysis.
- 3. Only detected compounds are presented.
- 4. ND = not detected at or above the analytical laboratory reporting limit. Reporting limits vary for each compound; see the analytical laboratory reports (Appendix F) for compound-specific reporting limits.
- 5. Duplicate sample.

Abbreviations:

 μ g/L = micrograms per liter; parts per billion

<= target analyte was not detected at or above the laboratory reporting limit shown</p>

EPA = U.S. Environmental Protection Agency

-- = sample not collected for analysis

FIELD MEASUREMENTS AND LABORATORY ANALYTICAL RESULTS FOR NATURAL ATTENUATION PARAMETERS

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

				Field Measuremen	ts ¹	Laboratory Analysis ²											
Sample Location	Sample Date	Eh ³	DO	Specific Conductance	Temperature	pH	Nitrate (N)	Manganese	Iron	Sulfate (SO ₄)	Carbon Dioxide	Methane	тос	Chloride	Total Alkalinity as CaCO ₃	Calcium	Magnesium
		(mV)	(mg/L)	(µS/cm)	(°C)	(pH Units)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Shallow Monitori			ı	1	T		_	ı	ı	1	ı			1			Ti de la companya de
	11/04/03	222	0.2	2,400	17	6.4											
MW-1	03/24/04	173	0.1	2,400	15	6.5	0.42	1.8	42	0.71	255	6.9	36.6	320	830	41	63
	03/11/05	138	0.1	2,100	14	6.5	<0.20	1.6	50	<0.50	258	8.0	14.1	260	860	36	57
	03/23/06	94	1.2	2,700	13	6.5	<0.20	4.3	61	0.99	260	2.4	38.0	330	830	40	64
	11/03/03 03/24/04	226 219	0.4	1,600 1,400	16 13	6.2	2.8 <0.20	6	30 61	<0.50 <0.50	314 232	3.8 4.5	33.9 35.7	240 160	520 550	66 65	40 39
MW-2	03/24/04	182	0.2	1,400	13	6.2	<0.20	4.6	53	<0.50	289	5.3	15.8	100	520	62	37
	03/11/05	132	0.1	1,300	13	6.4	<0.20	5.2	58	<0.50	272	2.0	31.7	100	480	77	39
	11/03/03	201	0.3	920	17	6.3	4.6	3.9	9.1	<0.50	174	5.4	18	37	460	55	36
	03/24/04	183	0.3	1,000	13	6.4	<0.20	5.3	66	<0.50	179	9.1	36.3	35	450	62	46
MW-3	03/10/05	169	0.1	600	13	6.4	<0.20	2.5	33	<0.50	116	5.7	16.5	33	280	31	28
	03/23/06	103	0.4	540	12	6.7	<0.20	1.9	25	2.2	84.5	2.8	12.3	25	210	24	18
MW-4	11/03/03	207	0.1	670	18	6.3											
11111	11/03/03	255	0.3	660	17	6.3	<1.0	0.42	0.97	< 0.50	125	9.2	9.36	25	350	28	45
	03/24/04	293	0.2	650	14	6.3	< 0.20	0.48	4	<0.50	122	6.3	11.4	21	310	29	50
MW-5	03/10/05	232	0.1	570	14	6.3	< 0.20	0.67	4.7	< 0.50	136	6.4	7.34	18	320	29	48
	03/24/06	136	1.1	190	11	6.6	< 0.20	0.29	2.2	< 0.50	24.9	0.93	5.54	8.6	71	9.3	14
MW-6	11/04/03	236	0.2	890	13	6.3											
	11/03/03	197	0.1	860	13	6.4	<1.0	13	2.3	< 0.50	152	8.8	28.1	45	420	26	42
MW-7	03/24/04	189	0.2	880	11	6.4	< 0.20	3	55	< 0.50	147	10.6	20.8	46	410	31	47
IVI VV - /	03/09/05	130	0.1	850	11	6.3	< 0.20	3.5	56	< 0.50	157	10.5	18.2	60	400	35	52
	03/24/06	197	3.4	120	10	6.7	< 0.20	0.23	0.91	4.0	15	1.4	43.7	21	15	4.3	2.2
MW-8	11/04/03	237	0.3	740	17	6.2											
MW-9	11/04/03	211	0.2	810	17	6.4											
MW-10	11/04/03	215	0.1	880	18	6.4											
MW-11	11/04/03	196	0.2	870	19	6.4											
MW-12	11/04/03	251	0.4	810	18	6.2											
	11/04/03	234	0.2	2,700	16	6.3											
MW-14	03/24/04	212	0.1	2,400	14	6.4	<0.20	1.5	41	<0.50	290	5.2	106	460	1,100	23	50
	03/09/05	109	0.1	2,400	13	6.6	<0.20	0.73	18	<0.50	270	0.16	60.9	390	1,100	25	55
MW 17	03/23/06	98	0.4	2,900	13	6.7	< 0.20	0.98	38	< 0.50	310	2.6	71.3	410	1,000	29	56
MW-17 MW-18	11/04/03	240	0.2	970 950	15 17	6.4 6.4											
IVI W - 18	11/04/03 03/24/04	198 252	0.2	930	13	6.8	<0.20	1	0.2	1.6	30.5	<0.00158	9.48	21	210	32	32
MW-20	03/09/05	182	0.1	320	13	6.6	<0.20	1.5	2.2	1.0	41.4	0.00138	7.25	17	180	23	23
IVI VV -20	03/09/03	164	0.6	310	11	6.8	<0.20	0.92	0.62	2.6	25.1	< 0.0015	5.11	8.6	140	27	15
	03/24/04	162	0.3	990	11	6.4	<0.20	2.7	67	<0.50	135	0.0043	21.4	54	380	30	50
	03/24/04						<0.20	2.7	69	<0.50	179	7.4	18.6	62	430	29	50
MW-21	03/10/05	146	0.1	930	11	6.3	<0.20	2.7	69	<0.50	165	7.8	16.4	62	420	29	49
	03/24/06			4	4.0		< 0.20	2.7	70	< 0.50	156	5.1	17.7	84	360	28	47
	03/24/06	95	0.5	1,000	10	6.6	<0.20	2.7	70	<0.50	150	5.8	18.1	84	360	27	47
Deep Monitoring			ı	1	ı	1		I	ı	l .	ı	1		1			I.
MW-13D	11/04/03	253	0.1	670	16	5.9											
MW-15D	11/04/03	255	0.3	1,200	14	6.5											
MW-16D	11/04/03	246	0.1	4,600	16	7.5											
MW-19D	11/03/03	197	0.3	730	18	6.5											
			l .	1	l .	1		l .	l .	1	l .	1		1	1		1

Notes

- 1. Water quality parameters measured in the field with a YSI model 556 in a flow-through cell.
- 2. Samples collected by Geomatrix and analyzed by EPA Method 415.1 (total organic carbon), EPA Method 200.7 (calcium and magnesium), EPA Method 300 (chloride, nitrate and sulfate), EPA Method 6010B (Iron (II) and Manganese (II)), Standard Methods 2320B (total alkalinity), RSK 175 (carbon dioxide and methane).
- 3. Reduction-oxidation potential standardized to hydrogen electrode for silver/silver-chloride electrode (199 millivolts was added to the field measurement).
- 4. Duplicate sample.

Abbreviations:

Eh = reduction-oxidation potential DO = dissolved oxygen

TOC = total organic carbon

CaCO₃ = calcium carbonate mV = millivolts mg/L = milligrams per liter

 μ S/cm = microSiemens per centimeter

 ${ ext{--}}=$ not measured or sample not collected for analysis.

[°]C = degrees Celsius

< = target analyte was not detected at or above the laboratory reporting limit shown.

LABORATORY ANALYTICAL RESULTS FOR CHLORINATED PHENOLS AND PHENOL (8270 SIM METHOD)¹

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in micrograms per liter (µg/L)

Monitoring	Date	D.C.D.	3,4,5-	2,3,5,6-	2,3,4,5-	2,3,4,6-	3,4- DCD	2,3,6-	3,5-	2,3,4-	2,4,5-	2,4,6-	2,3,5-	2,5-	3-CP	2,6-	2,3-	2,4-	2- CD	DI I
Wells	Sampled 24-Mar-04	PCP	TCP	TeCP	TeCP	TeCP	DCP	TCP	DCP	TCP	TCP	TCP	TCP	DCP	+ 4-CP ²	DCP	DCP	DCP	CP	Phenol
	24-Mar-04 11-Mar-05	<1 2	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<2	<1 <1	<1 <1	<1 <1	<1	<1 <1
MW-1		<1						<1 												
IVI VV - I	07-Sep-05 ³																			
	23-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	23-Mar-06 24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	11-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-2	07-Sep-05 ³	<1																		
	23-Mar-06	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	10-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-3	07-Sep-05 ³	<1																		
	23-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
	10-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-5	07-Sep-05 ³	<1																		
	24-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	24-Mar-04	15,000	92	320	17	23	390	<1	18	1	56	<1	2	<1	460	<1	<1	4	<1	2
MW-7	09-Mar-05	12,000	290	490	37	17	610	1	28	2	75	1	2	<1	890	<1	1	5	<1	3
	24-Mar-06	1,200	15	24	4 J	8.9	41	<1	1.2	<1	4.5	<1	<1	<1	37	<1	<1	<1	<2	<1
	24-Mar-04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
MW-14	09-Mar-05	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1
IVI VV - 1'4	07-Sep-05 ³	<1		-																
	23-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	24-Mar-04	9	2	2	2	<1	8	<1	<1	<1	1	<1	<1	<1	2	<1	<1	<1	<1	<1
MW-20	09-Mar-05	100	4	2	4	12	15	<1	9	<1	<1	4	5	<1	9	<1	<1	1	<1	<1
	23-Mar-06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<2	<1
	24-Mar-04	520	52 ve	16	16	7	130	<1	9	<1	3	<1	<1	<1	200	<1	<1	<1	<1	<1
	24-Mar-04 ⁴	570	50 ve	17	14	6	120	<1	9	<1	3	<1	<1	<1	200	<1	<1	<1	<1	<1
MW-21	10-Mar-05	5,500	250	109	4	27	310	<1	19	<1	5	<1	<1	<1	270	<1	<1	2	<1	<1
17177 21	10-Mar-05 ⁴	5,500	250	110	4	27	310	<1	20	<1	5	<1	<1	<1	270	<1	<1	2	<1	<1
	24-Mar-06	7,700	260	170	17	39	420	<1	17	<1	9.3 ve	1.1	<1	<1	650	<1	2.1	<1	<2	1.8
	24-Mar-06 ⁴	8,000	270	180	20	44	450	<1	19	<1	9.0 ve	1.2	<1	<1	700	<1	2.2	<1	<2	1.9

Notes

- 1. Groundwater samples analyzed by EPA Method 8270 SIM.
- 2. Results shown are for both 3-CP and 4-CP (the sum of) since these compounds could not be separated for individual analysis in the laboratory.
- 3. Confirmation sample collected due to detection of pentachlorophenol on March 10 or 11, 2005.
- 4. Duplicate sample.

Abbreviations:

PCP = pentachlorophenol

TeCP = tetrachlorophenol

TCP = trichlorophenol

DCP = dichlorophenol

CP = chlorophenol

EPA = U.S. Environmental Protection Agency

SIM = select ion monitoring

- -- = not measured or sample not collected for analysis.
- < = target analyte was not detected at or above the laboratory reporting limit shown.
- J = the result is below the reporting limit and represents an estimated value.
- ve = value exceeded the calibration range established for the instrument and is therefore considered an estimate; result upon dilution and re-analysis was not detected at or above the laboratory reporting limit.

LABORATORY ANALYTICAL RESULTS FOR DIOXINS AND FURANS¹

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Concentrations in picograms per liter (pg/L)

												grains per	40 /										
Monitoring Well Number	Date Sampled	2, 3, 7, 8- TCDD	1, 2, 3, 7, 8- PeCDD	1, 2, 3, 4, 7, 8- HxCDD	1, 2, 3, 6, 7, 8- HxCDD	1, 2, 3, 7, 8, 9- HxCDD	1, 2, 3, 4, 6, 7, 8- HpCDD	OCDD	Total Dioxins	2, 3, 7, 8- TCDF	1, 2, 3, 7, 8- PeCDF	2, 3, 4, 7, 8- PeCDF	1, 2, 3, 4, 7, 8- HxCDF	1, 2, 3, 6, 7, 8- HxCDF	2, 3, 4, 6, 7, 8- HxCDF	1, 2, 3, 7, 8, 9- HxCDF	1, 2, 3, 4, 6, 7, 8- HpCDF	1, 2, 3, 4, 7, 8, 9- HpCDF	OCDF	Total Furans	TOTAL TEQ 2,3	PERCENT 2,3,7,8- TCDD ⁴	Comments
Shallow Wells																							·
	24-Mar-04	<1.69	<2.85	<5.19	<6.00	< 5.29	<4.87	87.0	13.5	<1.10	<3.21	<2.84	<1.20	<1.61	<1.47	<1.91	<2.21	<2.57	<7.41	<8.79	0.00870	0	
MW-1	11-Mar-05	<1.77	<2.88	<3.27	<4.25	<3.70	6.39 J	136	21.3 J	<1.33	<3.57	<3.70	<1.42	<1.26	<1.13	<1.73	<1.74	<2.36	<4.44	<9.18	0.0775	0	
	23-Mar-06	<1.75	<1.66	<3.92	<4.06	<5.06	<3.64	11.7 J	<12.11	<1.48	<2.48	<2.48	<1.15	<1.29	<1.35	<1.50	<1.28	<2.20	<5.58	<7.68	0.00117	0	
	24-Mar-04	<1.63	<2.60	<4.86	<5.67	<4.89	<7.48	61.1	<21.16	<1.37	<3.65	<3.00	<1.30	<1.79	<1.73	<2.42	<3.01	<3.67	<7.05	9.62	0.00611	0	
MW-2	11-Mar-05	<1.61	<2.85	<2.75	<3.59	<3.03	<4.61	18.8 J	<12.66	<1.39	<3.37	<3.02	<1.46	<1.30	<1.29	<1.88	<1.71	<2.32	<3.16	< 8.96	0.00188	0	
	23-Mar-06	< 0.891	<1.80	<3.57	<3.69	<4.70	<4.99	<7.44	<12.381	<1.52	<2.05	< 2.05	<1.10	<1.17	<1.30	<1.38	< 0.729	<1.21	<4.62	<6.18	0	0	
	24-Mar-04	<1.90	<2.46	<4.74	<6.23	<4.81	74.6	976	219.14 J	<1.46	<3.76	<2.88	<1.15	<1.53	<1.44	<1.99	21.6 J	<2.22	33.9 J	109.03 J	1.06	0	
MW-3	10-Mar-05	<1.85	<4.50	<4.51	<5.56	<4.59	<5.31	31.6 J	<17.22	<1.72	<2.91	<2.77	<1.65	<1.51	<1.52	<1.92	<1.88	<2.40	<6.19	< 8.95	0.00316	0	
	23-Mar-06	<1.56	<2.23	<4.45	<4.39	<5.37	<3.77	23.5 J	<12.93	<1.41	<1.99	<1.95	<1.08	<1.18	<1.28	<1.51	<2.14	<4.14	<8.13	< 9.05	0.00235	0	
	24-Mar-04	<1.45	<2.24	<3.67	<4.31	<3.72	19.5 J	121	36.9	<1.29	<3.17	< 2.80	< 0.747	<1.02	<1.05	<1.38	7.60 J	<2.45	20.2 J	28.76	0.286	0	
MW-5	10-Mar-05	<1.65	<4.20	<3.50	<4.31	<3.47	<6.54	59.7	<16.7	<1.48	<3.04	<3.01	<1.92	<1.80	<1.74	<2.36	<2.26	<2.60	<6.19	8.02 J	0.00597	0	
	24-Mar-06	<1.33	<2.64	<4.30	<4.52	< 5.65	51.9	553	132.7 J	<1.69	<4.19	<4.01	< 2.05	<2.19	<2.47	<3.01	36.3	<3.89	124	174.5	0.950	0	
	16-Sep-02	<3.12	<3.45	< 5.82	<6.31	<5.32	32.4	144	50.0	<3.36	<4.21	<4.59	<2.38	<2.81	< 2.86	< 2.99	6.59	<6.67	22.2	81.43 J	0.407	0	
	22-May-03	<1.62	<4.05	22.6 J	<3.83	<3.10	30.2	449	101.50	<1.26	< 2.04	<2.02	<1.02	<1.17	<1.19	<1.15	4.97 J	< 0.807	20.7 J	48.44	2.66	0	
	22-May-03	<1.27	< 2.00	7.89 J	< 2.47	<1.97	16.3	231	50.0	<1.01	<1.66	<1.64	<1.09	<1.28	<1.4	<1.67	2.09 J	<1.19	7.05 J	32.63	0.997	0	filtered
MW-7	03-Nov-03	<2.22	<4.82	<9.48	<10.4	<9.25	<9.54	41.1 J	<26.98	<2.29	<7.96	< 5.93	<2.11	<2.51	< 2.63	<3.12	<3.03	<4.42	<10.6	<23.04	0.00411	0	filtered
	24-Mar-04	<1.76	46.5	56.4	< 5.29	<4.61	71.4	1370	289.3 M	<1.41	<3.57	<2.67	<1.13	<1.57	<1.28	<1.95	8.00 J	<3.17	31.3 J	157.3 J	53.0	0	
	09-Mar-05	<3.21	<4.66	<11.7	<9.57	<7.78	42.4	1,600	88.6	<4.83	<4.92	<4.87	< 5.41	<4.70	< 5.00	<4.88	< 5.91	<6.93	32.1 J	81.5	0.587	0	
	24-Mar-06	<1.32	<2.23	<3.69	<3.84	<4.70	35.9	347	100.2 J	<1.00	<1.87	<1.79	<1.57	<1.79	<1.94	<2.20	15.0 J	<2.41	47.3 J	95.66 J	0.548	0	
	24-Mar-04	<1.74	<3.36	< 5.32	< 5.84	<5.15	10.2 J	70.4	19.9 J	<1.31	<3.96	<3.01	<1.13	<1.64	<1.33	<1.97	<2.42	<2.97	<8.53	<10.21	0.109	0	
MW-14	09-Mar-05	<2.18	<4.31	<4.54	<5.51	<4.31	<7.26	46.2 J	<19.26	< 2.05	< 2.89	<2.59	<2.29	<2.12	< 2.09	<2.78	<2.57	<3.13	<8.18	<10.85	0.00462	0	
	23-Mar-06	<1.56	<2.04	<3.38	<3.43	<4.30	<2.98	<9.73	<10.88	<1.06	<1.72	<1.80	< 0.841	< 0.942	<1.00	<1.07	<1.38	<2.30	< 5.03	<6.23	0	0	
	24-Mar-04	4.05 J	22.7 J	60.2	2,060	466	93,600	1,240,000	210,367.2	6.50 F	19.5 J	15.3 J	52.6	226 D,M	57.6	11.4 J	3,220 D,M	251	13,600	26,240 D,M	1430	0.00283	
MW-20	09-Mar-05	<2.05	<4.69	<8.75	111	17.8 J	3,850	50,500	9,227	<4.81	<7.00	<6.29	14.8 J	22.2 J	16.5 J	4.42	832	57.9	3,000	6,192 D,M	71.0	0	
	24-Mar-06	<1.47	4.83 J	<9.85	138	20.1 J	3,770	45,300	8,352.1	<1.33	<4.70	<4.57	20.4 J	<3.93	16.9 J	<4.95	1,090	105	4,910	6,872.5	79.0	0	
	24-Mar-04	<1.82	<2.92	8.76 J	56.1	9.46 J	1,050	12,800	2,542.8	<1.39	<7.15	<3.28	6.89 J	20.9 J	10.3 J	<2.55	605	32.6	1,960	3,477.1 D,M	29.6	0	
	10-Mar-05	<3.78	<14.7	64.6	<9.98	<9.90	79.4	223	274.5 M	<6.15 F	<6.27	<7.06	1,640	<9.63	<8.08	26.0 J	<8.57	177	<24.7	2,687.4	176	0	
MW-21	10-Mar-05	<1.19	<4.39	<4.13	<5.51	<4.29	20.4 J	522	38.0	<1.15	<2.10	<2.20	<1.40	<1.27	<1.25	<1.58	9.20 J	<1.72	23.4 J	35.01	0.351	0	duplicate
	24-Mar-06	<1.45	<3.70	<5.73	< 5.40	<6.54	24.1 J	314	45.2	<1.35	<1.97	<2.05	<1.09	<1.11	<1.16	<1.27	7.84 J	<1.94	23.0 J	37.96 J	0.353	0	
	24-Mar-06	<1.68	<3.45	<6.38	<6.11	<7.43	16.8 J	326	27.9	<1.14	<4.02	<4.17	<1.57	<1.77	<1.87	<1.98	3.24 J	<2.27	15.7 J	27.2 J	0.235	0	duplicate
	TEF ⁵ :	1	1	0.1	0.1	0.1	0.01	0.0001		0.1	0.05	0.5	0.1	0.1	0.1	0.1	0.01	0.01	0.0001				

Notes:

- 1. Groundwater samples analyzed by EPA Method 1613.
- 2. Calculated as the sum of congener concentrations after each has been multiplied by its TEF.
- 3. Concentrations not detected above the laboratory reporting limit were assigned a concentration of 0 pg/g to calculate TEQ.
- 4. Calculated by dividing the concentration of 2,3,7,8-TCDD by the Total TEQ (multiplied by 100). When the concentration of 2,3,7,8-TCDD was not detected, it was assigned a concentration of 0 pg/g for this calculation.
- 5. Toxicity equivalency factor (unitless) from the World Health Organization, 1997 (WHO-97), adopted from F.X.R. van Leeuwen, 1997.
- 6. TEQ calculation included at least one congener concentration that was "J" flagged by the laboratory. The TEQ is therefore considered approximate.

Abbreviations:

TCDD = tetrachlorodibenzo-p-dioxin

PeCDD = pentachlorodibenzo-p-dioxin

HxCDD = hexachlorodibenzo-p-dioxin

HpCDD = heptachlorodibenzo-p-dioxin

 $OCDD \ = octachlorodibenzo-p-dioxin$

TCDF = tetrachlorodibenzofuran

PeCDF = pentachlorodibenzofuran HxCDF = hexachlorodibenzofuran

HpCDF = heptachlorodibenzofuran

OCDF = octachlorodibenzofuran

TEQ = toxicity equivalence

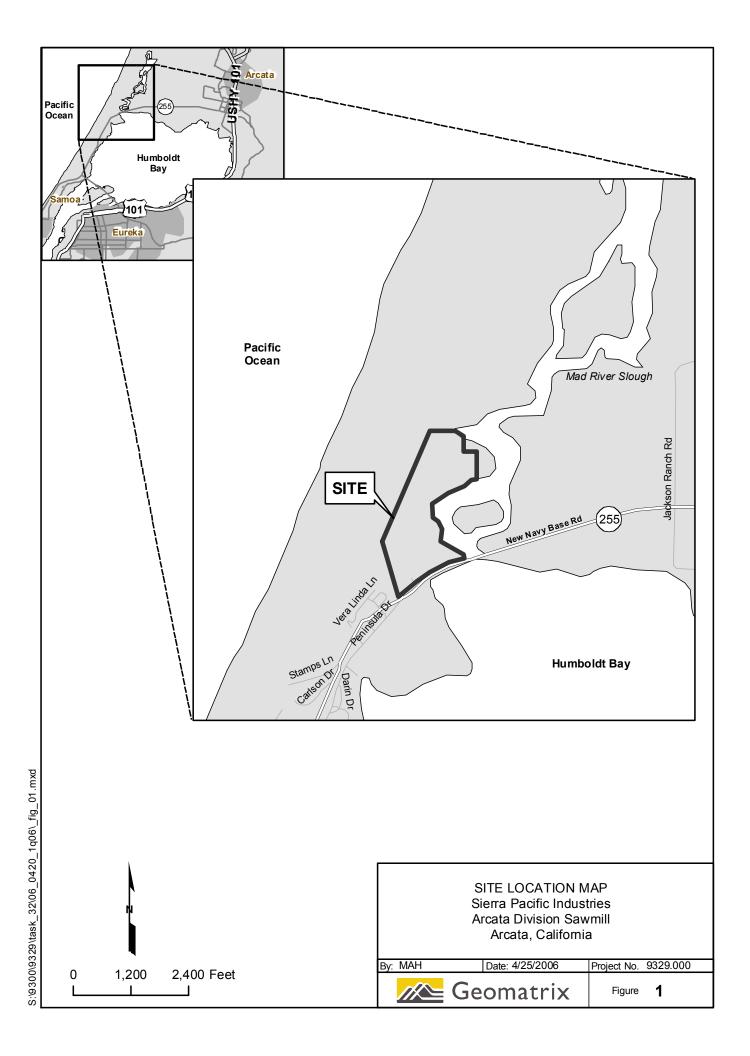
TEF = toxicity equivalency factor (unitless)

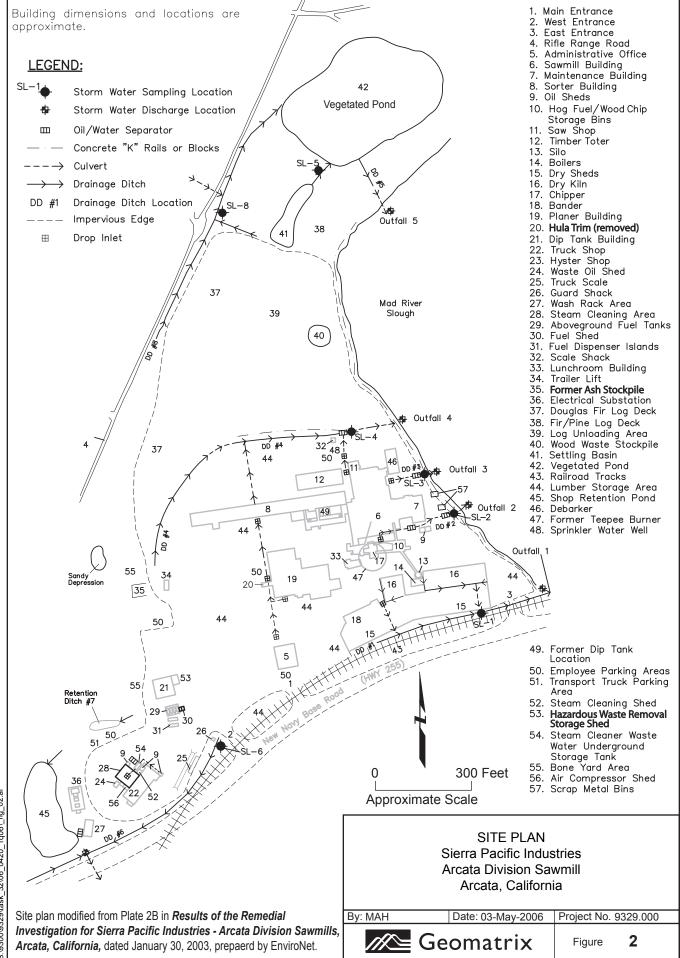
EPA = U.S. Environmental Protection Agency

-- = not measured or sample not collected for analysis.

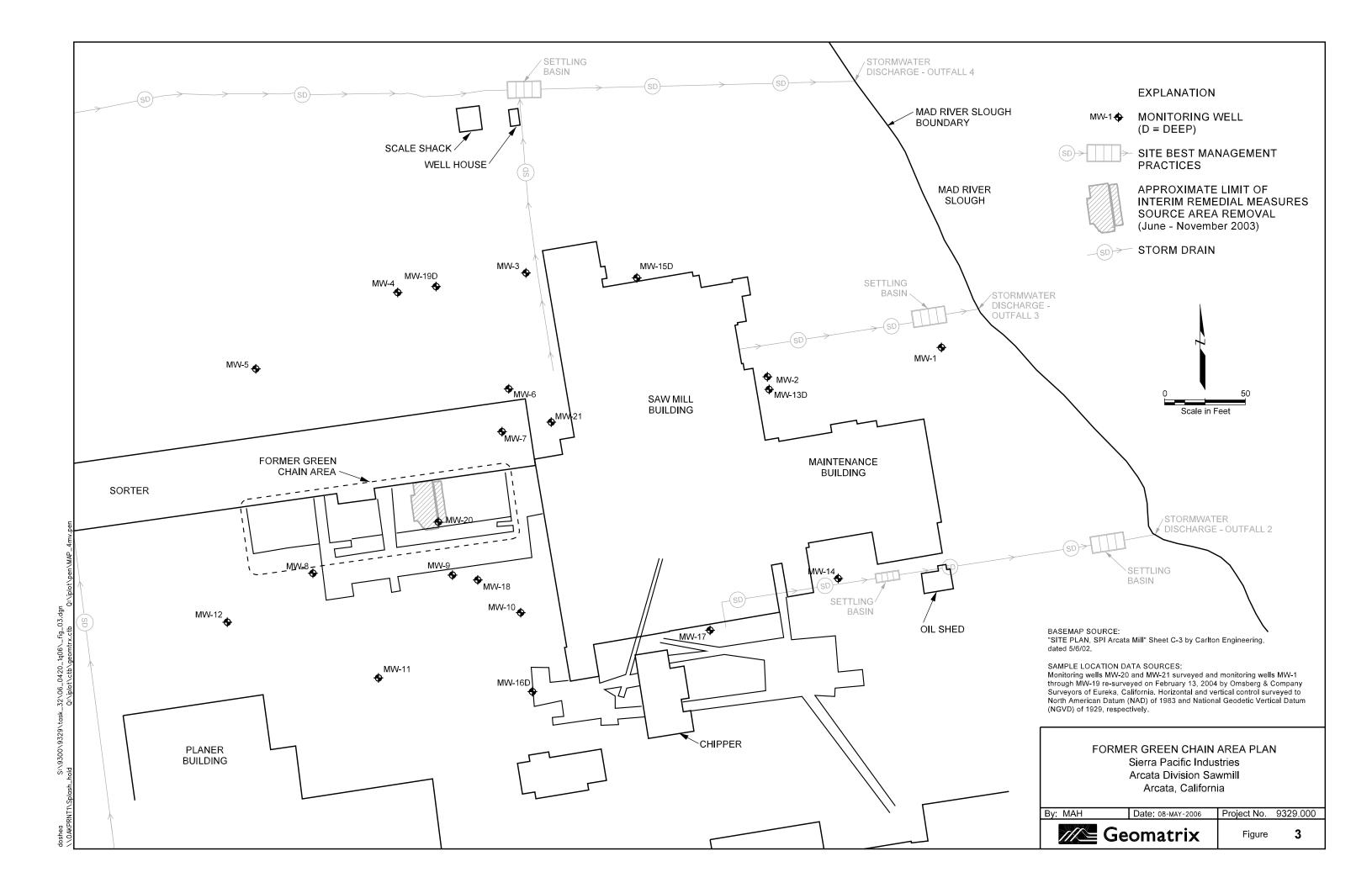
< = target analyte was not detected at or above the laboratory reporting limit shown.

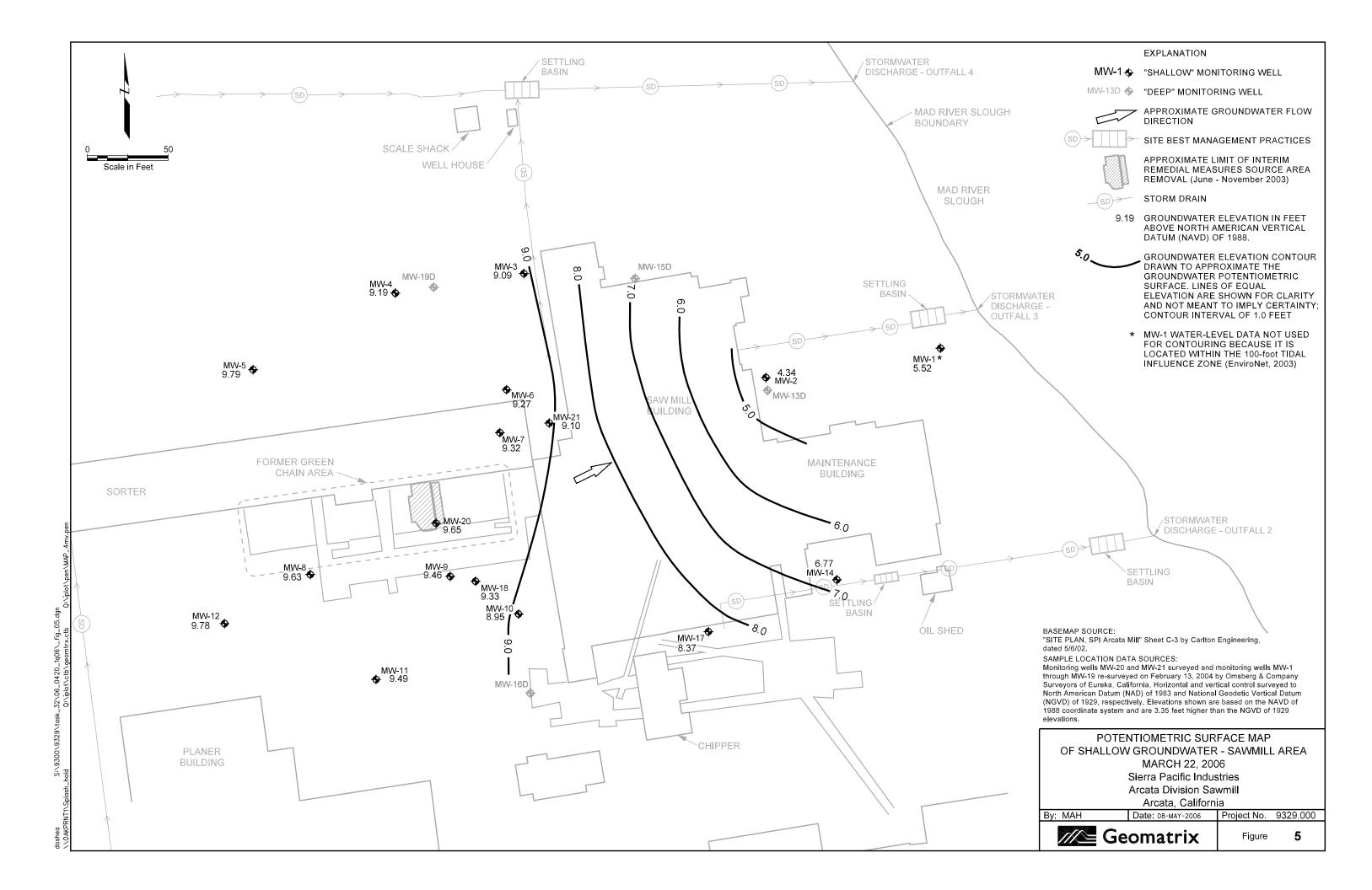
J = concentration detected was below the calibration range, as flagged by the laboratory.

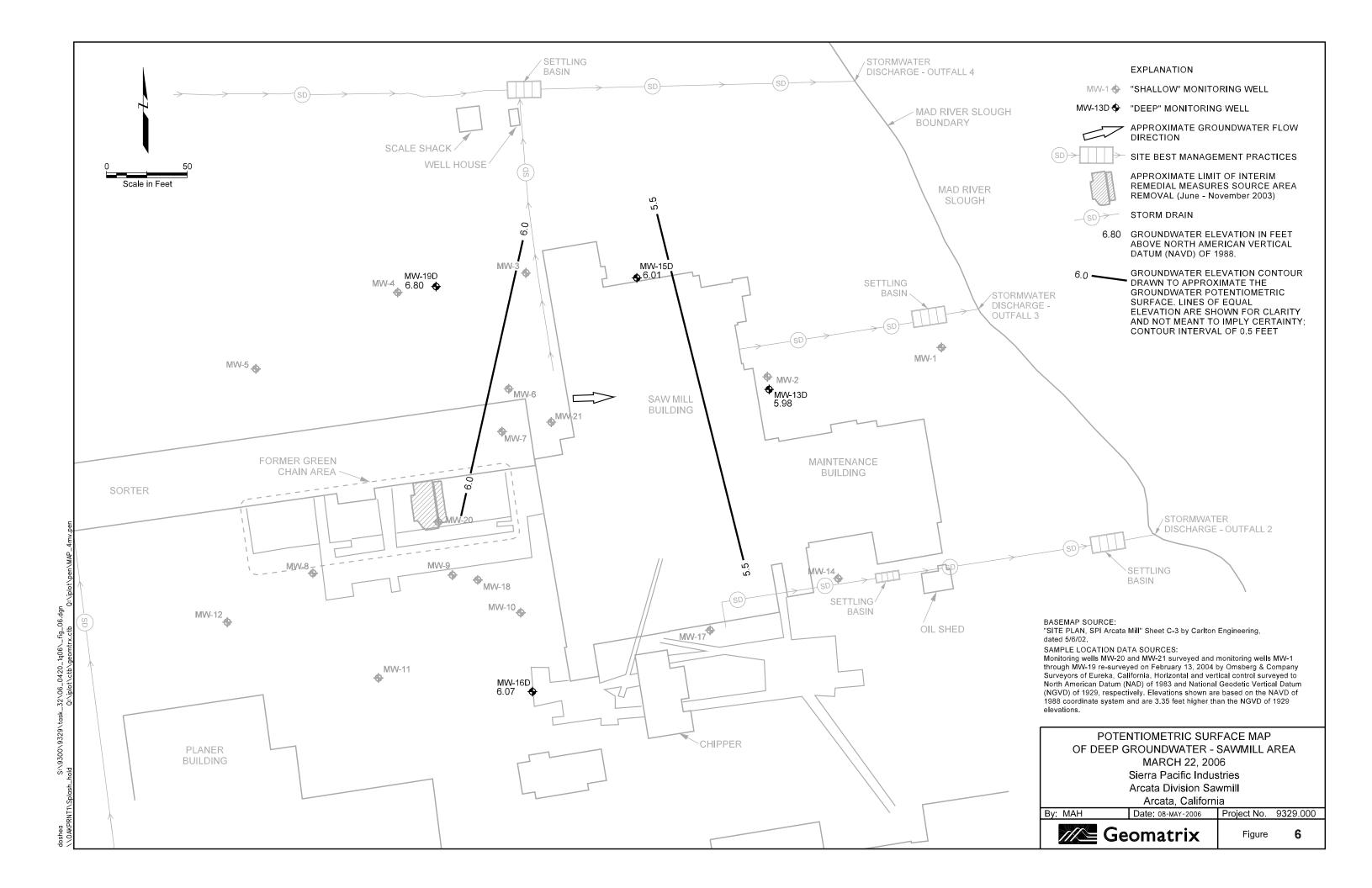

M = maximum possible concentration, as flagged by the laboratory.

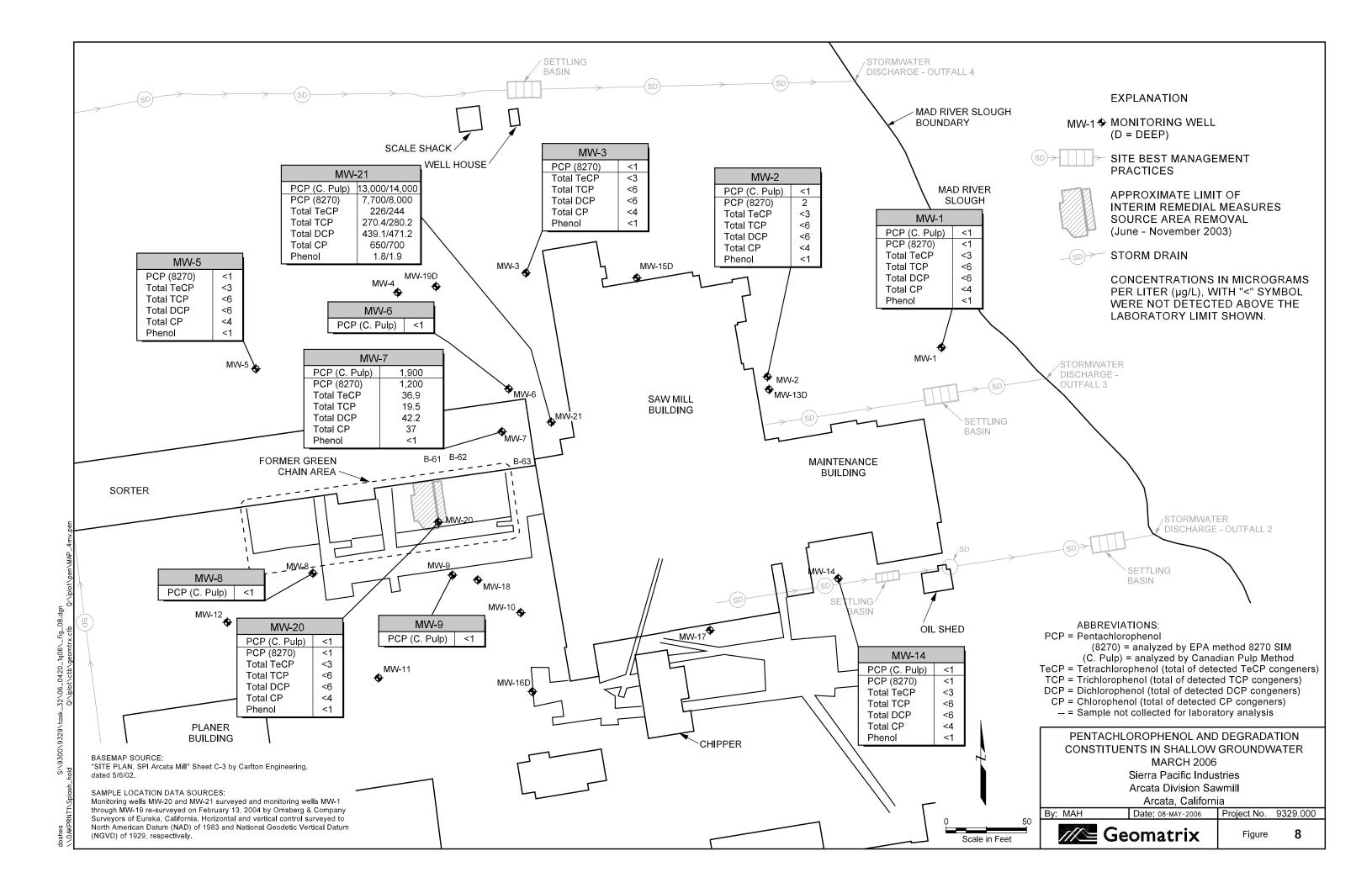

 $F = analyte \ confirmation \ on \ secondary \ column, \ as \ flagged \ by \ laboratory.$

D = presence of diphenyl ethers detected, as flagged by laboratory.




FIGURES





S:\9300\9329\task 32\06 0420 1q06_fig_02.ai

APPENDIX A

Field Documentation

Groundwater Monitoring and Sampling Records Pilot Study Groundwater Sampling Records

WATER LEVEL MONITORING RECORD

Project Name: SPI Arcata Project and Task Number: 9329.000.0 32

Instrument Used: ES #11 Date: 3/22/06 Measured by: MAH Instrumed 7/23/06 For MW $22-\rho-25$ Note: For you convenience, the following abbreviations may be used.

P = Pumping

I = Inaccessible

D = Dedicated Pump

ST = Steel Tape

ES = Electric Sounder MP = Measuring Point

WL = Water Level

Well No.	Time	MP Elevation (feet)	Water Level Below MP (feet)	(feet)	Previous Water Level Below MP	Remarks
RR	810	15.70	17-55	Eas'		a *
MW-12	8:39	10.76	0.98	·		
MW-8	8:41	10.33	0.70			•
MW-11	8:45	10.28	0,79			
MW-9	913	9.91	0.45	•		
MW-18	852	9.92	0.59			્રાંગ લાગ છે.
MW-10	904	9.85	0.90			
MW-16D	100	9.83	3.76			
MW-17	916	9.16	0.79			
MŴ_14	9/ 9	9.15	2.38			
MW-1	971	9.69	4,17			
MW-2	935	9.61	5.27			
MW-13D	929	9.96	3.78			į.
MW-15D	940	11.19	5-18			
MW-3	943	11.22	2.13			2
MW-1.9D	955	11.06	4.26			V
MW-4	958	10.74	1.55.			4
MW-5	1000	10.74	0.95			34.0
MW-6	1016	9.83	0.56	,		
MW-20	1018	11.87	92.22	Č		
MW-21	1004	12.89	3.79			
MW-7	1021	9.74	0.42			
RR	1070	15.70	15.80			
		S. C.				2
MW-22	4.05	15.12	4.38			
MW-23	9.06	15.11	3.99			
P-24	22/16 904	15.33	2.61			
P-25	903	15.75	3.40			
		,				* Vide-
		21		w. /*		

Well ID:	MW	,-					Initial Depth to Water: イ. / テ							
Sample II	D: MW-1-	z00603	Duplic	ate ID	:						:			
Sample D	epth: MI	D SCRE	EN						oth to Well					
Project a	nd Task I	No: <u>932</u>	9.000.0	23			Well	Diar	neter:	2 '	1			
Project N	lame: <u>SP</u>	l Arcata	a											
Date:	3/23/06	<u> </u>					Volui	me F	Removed:	3. 6				
Sampled	By:N	/AH/MK												
Method o	of Purging	g: <u>Low</u>	Flow											
Method o	of Sampli	ng: <u>Low</u>	Flow	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-										
Time	Intake Depth	Rate (gpm)	190	1. 1.)	Temp. (°C)	pH (units)	Specifi Electric Conducta (µS/cm	al nce	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment)			
1216		40cm/	ان و	2	13.98	6.61	785	0	4.80	-94.6	Clear, it yellow			
1720			1.0	, p	13.60	6.53	2669			-1064				
1232			2.	4	13 49	6.53			147					
1274			3.	2	13.41	6.54	2641		1. 21	-104.8				
1225	Sampl	e	3.	6	1 7 43	\$ 6 = 4	0 4 70		1-18"	1051	TPS=1776-19/L			
	ŧ.													
	-19					-								
					-									
		pŀ	d CALIE	BRATI	ON (cho	oose two)				Model or				
Buffer Sol	ution			рН	4.0	pH 7.0	pH 10.0)		X5_	I 556			
Field Tem	perature	°C								Cery	raid by			
Instrumen	t Reading	9								<i>E</i>	96,260			
	SPECIF	IC ELEC	CTRICA	L COI	NDUCT	ANCE - C	ALIBRATI	ON		Model or	Unit No.:			
KCL Soluti	ion (μS/cr	n=µmho	s/cm)											
Field Temp	perature °	C												
Instrument	Reading													
REDOX CALIBRATION DISSOLVED OX								ALIE	BRATION	Notes:				
Standard	Solution	4	468 mV		Salinit	xy %								
Field Tem	perature	°C			Altitud	le								
Instrumen	t Reading	9			Instru	ment Reac	ding							
Model or I	Unit No.:				Model	or Unit No	D.:							
Ag/AgCI E	Electrode	(SSCE)												
G:\FORMATS	SWELL SAN	4PL Řec-DO).doc											

Well ID:	Mh	2		-1										
Sample	ID: ۲۰۰۷	200603	Duplicate	ID:					J:					
1	Depth: M						Depth to Wel							
Project a	and Task	No: <u>9329</u>	.000.0 2	3			iameter:		2''					
Project I	Name: <u>SF</u>	PI Arcata				Total		$\supset $						
Date:	3/23/00	6				Volum	e Removed:							
Sampled	d By:	MAH/MK												
Method	of Purgin	g: <u>Low F</u>	low											
Method	of Sampli	ng: <u>Low l</u>	Flow											
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp.	pH (units)	Specific Electrical Conductano (µS/cm)		Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment)					
1404		400 L/.	0	1346	702	1360	5.50	-66.7	clear					
1406			0.46	13.04	642	1330	00.97							
1408			1.66	12.90	6.37	1325	0.73	-65.0						
1410			2.46	12.77	1636	1316		-66.3						
141/	sample		2.81	17.76	636	1316			+05= 655 mg/C					
				-										
-														
				-										
		pH		TION (cho	ose two)	T	T	Model or	/					
Buffer So			p	H 4.0	pH 7.0	pH 10.0		I VSI	556					
	nperature													
Instrumer	nt Reading													
				ONDUCTA	ANCE - CA	ALIBRATIO	N	Model or	Unit No.:					
KCL Solut			(cm)											
Field Tem														
Instrumen														
	EDOX CA			DISS	OLVED OX	KYGEN CAL	LIBRATION	Notes:						
Standard			88 mV	Salinity										
Field Tem			-	Altitude										
	nt Reading			Instrun	nent Readi	ing								
Model or	Unit No.:			Model	or Unit No	.:								
Ag/AgCI E	Electrode	(SSCE)												
G:\FORMAT:	S\WELL SAM	1PL Rec-DO.c	loc											

Initial Depth to Water: 2.13 Depth to Water after Sampling:							
Total De	pth to Wel	l:					
_ Well Dia	meter:	2"					
			1				
Volume I	Removed:	1					
_							
_							
_							
Specific Electrical Conductance (µS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment				
850	276	-66.5	Clear				
758	-		Clear				
643	0.50	-90.9	11				
554	0-39	-97.6					
551	0.38	-90.6	, 1				
542	0.37	-95.7	TOS= 348-3/2				
1		Model or	Unit No.:				
pH 10.0							
		1/5)	I 556				
		,					
IBRATION		Model or	Unit No.:				
GEN CALIB	RATION	Notes:					
)							
	Depth to Total De Well Dia Total Volume Specific Electrical conductance (μS/cm) 758 643 5542 pH 10.0 IBRATION	Depth to Water after Total Depth to Well Well Diameter: Total Volume Removed: Specific Electrical conductance (µS/cm) 758 067 643 0.59 554 0.37 pH 10.0 Dissolved Oxygen (mg/l) 2.76 758 0.37	Depth to Water after Sampling Total Depth to Well: Well Diameter: Total Volume Removed: Specific Electrical conductance (μS/cm) Specific Electrical conductance (μS/cm) Specific Electrical conductance (μS/cm) Specific Electrical conductance (μS/cm) Specific Electrical Oxygen (mg/l) SSCE) SSO SO SO SO SO SO SO SO SO				

Well ID:	MI	ルー 5				Initial Depth to Water: ⊘. 9 ≤						
Sample	ID: <u>MW-5</u>	-200633	Duplicate	ID:	~		Depth to Water after Sampling:					
Sample	Depth: MI	D SCRE	EN			Total De	enth to Wal	I.				
Project	and Task	No: <u>932</u> 9	0.000.0 2	3		Well Dia	meter:	2"				
Project	Name: <u>SP</u>	l Arcata				Total			1			
Date:	3/24 106	5				Volume —	Removed:					
Sample	d By: <u>N</u>	/AH/MK										
Method	of Purging	g: <u>Low l</u>	Flow									
Method	of Sampli	ng: <u>Low</u>	Flow			Marine Marine						
Time	Intake Depth	Rate (g pm)	Cum. Vol. (gal.)/	Temp.	pH (units)	Specific Electrical Conductance (μS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment)			
754		300	0	10.68	6.87	704	396	-560	clear			
755			0.36	10.35	674		1.72	-616				
757			6.9 L	- 11.09	6.64	197	1.14	- 53 4				
758			1.24	11.15	6.63	194	0.97	-626				
759			1-56	11/17	6.62	167	2206	-62.6				
801			2.1 L	11.20	6.60	194	1.76	41.6				
802			2,46	11.71	6.60	104	1. 1. 1.	-69.6				
803			2.74	11, 7	6 59	195	1.05	-631				
804	Sample		3.02	11.22	6.58	[94	1.06	-62.6	TPS=176ms/L.			
		pН	CALIBRA	TION (cho	pose two)			Model or	Unit No.:			
Buffer Sc	lution		р	H 4.0	pH 7.0	pH 10.0		10				
Field Ten	nperature ^c	°C						/ / /	2 556			
Instrume	nt Reading											
	SPECIF	IC ELEC	TRICAL C	ONDUCTA	ANCE - CA	ALIBRATION	***************************************	Model or	Unit No.:			
KCL Solut	tion (μS/cm	n=μmhos	/cm)									
Field Tem	perature °	C										
nstrumen	t Reading											
R	EDOX CA	LIBRATI	ON	DISS	OLVED O	XYGEN CALII	BRATION	Notes:				
Standard	Solution	46	68 mV	Salinit								
Field Temperature °C Altitude												
Instrument Reading Instrument Reading						ing						
Model or	Unit No.:			Model	or Unit No	.:						
Ag/AgCI [Electrode (SSCE)										
G:\FORMAT	S\WELL SAM	PL Rec-DO	loc		-							

Well ID:	MW-6			***************************************		Initial Depth to Water: 0,56						
Sample	ID: MW-06-	200603 D	uplicate	D:			er after Sampling:					
Sample	Depth:	TOC				Total Depth to						
Project a	and Task No	o.: <u>9329.00</u>	0.0 32	•		Well Diameter						
Project I	Name: <u>SP</u>	I ARCATA				1 Casing/Bore	ehole Volume: 1 2 g					
Date: <u>0</u>	3/ ^{2~} 406					(Circle one)						
Sample	ву: <u>МАН</u>	/MK	,		***************************************	4 Casing/Bore (Circle one)	ehole Volumes: 3.69					
Method	of Purging:	DISPOSA	ABLE TER	LON BAIL	.ER	,	Porchala //, /					
Method	of Sampling	g: <u>DISPOS</u>	ABLE TE	FLON BAI	LER	Total Casing/Borehole 4 9 9 / Volumes Removed:						
Time	Depth (gpm) (gal.) (°C) (units)					Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)					
1541			O	10.45	6.61	900	Clean					
1542			(9.37	6.58	910	stightly alondy					
1544			2	718	6.54	990	Hightly would y					
1546			3	9.08	6.5	995	η 11 11 11					
1546	iample		4	9.12	6.57	994	· · · · · · · · · · · · · · · · · · ·					
	,						10: 646 -7/6					

	pH C	ÁLIBRATI	ON (choo	se two)		Model or L	Jnit No.:					
Buffer S	olution	pH 4.0) pH 7	.0 pH 10	0.0		15 I 556					
Tempera	ture C											
Instrume	ent Reading											
SPECI	FIC ELECT	RICAL CON	NDUCTAN	ICE – CAL	IBRATION	Model or L	Jnit No.:					
KCL Soli	ution (μS/cm	n=μmhos/cm	1)									
Tempera	ture C											
Instrume	nt Reading											
Notes:												
\\sf3\ppingree	\$\FORMATS\W	ELL SAMPLIN	NG Record.do									

Well ID:	nu	1-7					Initia	Initial Depth to Water: こんとこ					
Sample	ID: <u>M^{ルー}の</u>	7-700663	Dupli	cate II	D:								
1	Depth: M							Total Depth to Well:					
Project a	and Task	No: <u>932</u>	9.000.0	23				Well Diameter: 2'					
Project I	Name: SF	PI Arcata	3					Total Volume Removed:					
Date:	3/2 4/10	6					Volu	me F	Removed:				
Sampled	By:	MAH/MK											
Method	of Purgin	g: <u>Low</u>	Flow										
Method	of Sampli	ng: <u>Low</u>	Flow										
Time	Intake Depth	Rate (gpm)	V	im. ol.	Temp. (°C)	pH (units	10	al ance	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment)		
1705		400 my	0		b.36	7.40	1 176		9.48	-46.2	Clear		
1706			.4	_	1014	7.38	3 175		7.45	-26.			
1208			1.7	2 (10.06	7.19	173	>	6.48	-124			
1210			2		9.87	705	3 118		5.97	-7,4			
1212			2.8	56	9.82	695	- 117		5.39	-6.			
-7.4			3.6		4.84	680	- 7		me 5" =	- 5 2			
1717			4.8	2 6	986	6 79	7			-Ci			
1718			5.3	2-6	9.81	ý. 7°,			· 7 · 6 · 7	- 5.3			
7.0			5.6		9,80	6.01	of d		argue pr	- ,			
1220	Sample		60		9.77	6-67	7 119		3.40	-2.1	11 -05 = 85 mg/L		
Duffer Co	l	рн	CALI	T	ION (cho					Model or	Unit No.:		
Buffer So	nperature	°C		рн	4.0	pH 7.0	pH 10.	0		1 40	556		
	nt Reading							-					
mstrumer			TDICA	1.00	NDUCTA	NOT	CALIDDAT						
KCL Solut		·		L CO	NDUCTA	INCE -	CALIBRAT	ON		Model or	Unit No.:		
Field Tem										-			
	•		-					-		-			
Instrument Reading								A 1 15	DATION	N1. 4	,		
REDOX CALIBRATION DISSOLVED OX Standard Solution 468 mV Salinity %							OX TGEN C	ALIE	SKATION	Notes:			
Standard Solution 468 mV Salinity % Field Temperature °C Altitude													
Instrument Reading Instrument Reading							ading						
Model or			***************************************		+	or Unit I							
Ag/AgCI E		(SSCE)				o. Ome 1							
G:\FORMAT:	S\WELL SAN	APL Rec-DO	.doc										

	• `						
Well ID: MW-8	Initial Depth to Water: りって 🖰						
Sample ID: MW-08-200603 Duplicate ID:	Depth to Wate	r after Sampling:					
Sample Depth:	Total Depth to	Well: 8.15'					
Project and Task No.: 9329.000.0 32	Well Diameter:	:_2"					
Project Name: SPI ARCATA		hole Volume: 12 g					
Date: 03/2 ⁹ 706	(Gircle one)	3 C					
Sampled By: MAH/MK	(Circle one) Total Casing/Borehole						
Method of Purging: DISPOSABLE TEFLON BAILER							
Method of Sampling: <u>DISPOSABLE TEFLON BAILER</u>	Total Casing/Borehole 4599/						
Time Intake Rate Vol. (gpm) Cum. Temp. pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)					
1347 0 1336 6.65	871	The Hough I want you may from					
1349 2 12.52 6.49	484	strain yellow, clear					
1350 3 12,35 6.06	857	· · · · · · · · · · · · · · · · · · ·					
1351 4 12.23 6.66	256	**					
1352 30,00 4.5 1223 6.51	857	N N O					
		TP1= 557-9/1 Saufe					
pH CALIBRATION (choose two)	Model or U	nit No.:					
Buffer Solution pH 4.0 pH 7.0 pH 10.0							
Temperature C	-	112 556					
Instrument Reading							
SPECIFIC ELECTRICAL CONDUCTANCE – CALIBRATIO	N Model or U	nit No :					
KCL Solution (μS/cm=μmhos/cm)							
Temperature C							
Instrument Reading							
Notes:							
\\sf3\ppingree\$\FORMATS\WELL SAMPLING Record.doc							

Well ID:	MW-9				****	Initial Depth to Water: 0 . 45						
Sample I	D: <u>MW-09-</u>	200603 D	uplicate II	D:		Depth to Wate	er after Sampling:					
Sample I	Depth:	TUC				Total Depth to						
Project a	and Task N	o.: <u>9329.00</u>	00.0 32			Well Diameter: 2"						
Project N	Name: <u>SP</u>	I ARCATA				1 Casing/Borehole Volume: 123 g						
Date: _03	3/ ²⁻² /06					(Circle one)						
Sampled	By: MAH	/MK				4 Casing/Borehole Volumes: 3. 7 9						
Method o	of Purging:	DISPOS	ABLE TEF	LON BAIL	.ER	(Circle one)						
Method o	of Samplin	g: <u>DISPOS</u>	SABLE TE	FLON BAI	LER	Total Casing/Borehole Volumes Removed: 4 9 9 1						
Time	Time Intake Rate Cum. Vol. (gpm) (°C)				pH (units)	Specific Electrical Conductance (μS/cm)	Remarks (color, turbidity, and sediment)					
1406			0	11.89	6.85	920	slightly yellow clear					
1407			1	11.55	6.68	975						
1408			2	11.65	6.61	922	• (
1409			3	11.66	6.60	974	**					
1410	Surger		4	11.69	6-60	932	705-605mg/L					
	,											
	рН С	CALIBRAT	ION (choo	se two)		Model or U						
Buffer So	olution	pH 4.	0 pH 7.	.0 pH 10	0.0	X	SI 65 G					
Tempera	ture C											
Instrume	ent Reading	3										
SPECII	FIC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or U	Jnit No.:					
KCL Solu	ution (μS/cn	n=μmhos/cr	n)									
Tempera	ture C											
Instrume	ent Reading]										
Notes:												

\\sf3\ppingree	e\$\FORMATS\V	VELL SAMPLI	NG Record.do	c								

Well ID:	MW-13D					Initial Depth to Water: 3, 98						
	D: <u>MW-13</u> I			ID:		Depth to Wate	er after Sampling:					
Sample [Depth:	TO	<u></u>			Total Depth to	o Well: <u>19.10'</u>					
Project a	ind Task N	o.: <u>9329.00</u>	00.0 32			Well Diameter						
Project N	lame: <u>SF</u>	I ARCATA				1 Casing/Borehole Volume: 2,59						
Date: _03	312406					(Circle one) 4 Casing/Borehole Volumes: 7.5 9 (Circle one)						
Sampled	By: MAH	I/MK										
Method o	of Purging:	DISPOS	ABLE TER	LON BAIL	ER	Tatal Occion ID						
Method o	of Samplin	g: <u>DISPO</u>	SABLE TE	FLON BAI	LER	Total Casing/Borehole Volumes Removed:						
Time	Depth (gpm) (gal.) (°C) (units)						Remarks (color, turbidity, and sediment)					
1446			0	12.72	6.30	840	Clear					
1449			1.5	13,05		750	: '					
1451			3	15.41	6.16	750	16					
1452			4	13.46	,	795	()					
1454			b	17.60	6.11	1064	17 1					
1457			7	13-65	6.17	1.17	17					
1459	in more		8	17.64	6.16	1178	T'					
							-01=766 mg/L					
	pH (CALIBRAT	ION (choo	se two)		Model or l	Jnit No.:					
Buffer Sc	olution	pH 4.	0 pH 7	.0 pH 10	0.0	$\overline{}$	SI 556					
Tempera	ture C											
Instrume	nt Reading	3										
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE - CAL	IBRATION	Model or U	Jnit No.:					
KCL Solu	ıtion (μS/cr	n=μmhos/cr	m)									
Tempera	ture C											
Instrume	nt Reading]										
Notes:					1							
	-											
						14-300						

\\sf3\ppingree	\$\FORMATS\V	VELL SAMPLI	NG Record.do	c								

Well ID:	MW	-14				Initial Depth to Water: 후 경영							
Sample I	ID:		Duplicate I	D:									
Sample I	Depth: MI	D SCREE	N			Total De	Total Depth to Well:						
Project a	and Task	No: <u>9329</u>	0.000.0 23			Well Diameter: 2							
Project N	Name: <u>SF</u>	PI Arcata	· · · · · · · · · · · · · · · · · · ·			Total							
Date:	3/23/06	3				Volume	Removed:						
Sampled	l By: !	MAH/MK											
Method	of Purgin	g: <u>Low l</u>	Flow										
Method	of Sampli	ng: <u>Low</u>	Flow										
Time	Intake Depth	Rate (gpm)	Cum. Vol.	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Remarks (color, turbidity, and sediment)				
1/16		0.4	0	13.20	6.71	3213	2.23	-104.1	x ellou, clear				
1118			0.86	12.95	6.62	3180	0.77	-1060	(·				
1120			1.66	12.79	6.65	3095	0.47	-106.1	u ((
1122			2,46	12.80	6.69	3020	6.42	-1077	u				
1123			2.86	12,60	6.71	2970		-102.0	li et				
1124	ina-young		3.2L	12.63	6.72	2930	0.44	-101.0					
									TOS= 1904 mg/L				
									·				
		pH	CALIBRAT	ION (cho	ose two)			Model or	Unit No.:				
Buffer So			p⊦	14.0	pH 7.0	pH 10.0		V57	556				
	nperature							//-	> / > Q				
Instrumer	nt Reading												
			,	NDUCTA	NCE - C	ALIBRATION		Model or	Unit No.:				
KCL Solut	ion (μS/cr	m=μmhos	/cm)						•				
Field Tem	perature °	C											
Instrumen													
	EDOX CA	LIBRATI	ON	DISSO	DLVED O	XYGEN CALI	BRATION	Notes:					
Standard			68 mV	Salinity				2.5 h	1/2 = 0.4 4/nin				
Field Tem				Altitude					,				
Instrumer)		+	nent Read								
Model or Ag/AgCl E		(SSCE)		Model	or Unit No).:							
G:\FORMAT:	S\WELL SAN	1PL Rec-DO.	doc			***							

Well ID:	MW-15D)				Initial Depth to Water: 5-18							
		D-200603				Depth to Wate	er after Sampling:						
Sample I	Depth:		700			Total Depth to	o Well: <u>19.90'</u>						
Project a	ind Task N	lo.: <u>9329.0</u> 0	00.0 32			Well Diameter: 2"							
Project N	Name: <u>SF</u>	PLARCATA				1 Casing/Borehole Volume: 24 9							
Date: _03	312406		, , , , , , , , , , , , , , , , , , , ,			(Circle one) (Casing/Borehole Volumes:							
Sampled	By: MAH	I/MK				Casing/Bore (Circle one)	ehole Volumes:						
Method o	of Purging	: DISPOS	ABLE TER	LON BAIL	.ER	` ,	Parekala 7						
Method o	of Samplin	g: DISPOS	SABLE TE	FLON BAI	LER	Total Casing/Borehole Volumes Removed:							
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)							
1514			0	12.84	6.43	884	Clear						
1516			l	17.82		866	11						
1518			3	13.26	6.50	1205	clear, slightly yellow						
1520			4	13.31	6.59	1250	11 11						
1522			5		6.64	1280	11 21						
1524			6	1340	6-65	1290	1 1						
1526	10.076		7.5	13.44	6.65	1290	-05= 837 mg/L 1 11 11						
	,						V = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	pH (CALIBRAT	ION (choo	se two)		Model or U	Jnit No.:						
Buffer Sc	olution	pH 4.	0 pH 7.	.0 pH 10	0.0		SI 556						
Tempera	ture C					7	54 5 5 C						
Instrume	nt Reading	9											
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or U	Jnit No.:						
KCL Solu	ıtion (μS/cn	n=μmhos/cr	n)										
Tempera	ture C												
Instrume	nt Reading	3											
Notes:	10/10	,+ (Extra	both	10 -	M.	MED						
					<u> </u>								
	·												
\\sf3\ppingree	\$\FORMATS\V	VELL SAMPLI	NG Record.doc	:									

						• '						
Well ID:	MW-16D)				Initial Depth to Water: 3.76						
Sample I	D: <u>MW-16</u>	D-200603	Duplicate	ID:		Depth to Wate	er after Sampling:					
Sample I	Depth:	TUC					o Well: 19.65'					
Project a	ind Task N	lo.: <u>9329.0</u> 0	00.0 32			Well Diameter	r: _2"					
Project N	lame: <u>SF</u>	PI ARCATA				1 Casing/Bore	ehole Volume: Z, 6 S					
Date: _03	3/ 2406					(Carele one)						
Sampled	By: MAH	I/MK				Casing/Borehole Volumes: 7-8-						
Method o	of Purging	DISPOS	ABLE TER	LON BAIL	.ER							
Method o	of Samplin	g: DISPOS	SABLE TE	FLON BAI	LER	Total Casing/Borehole Volumes Removed:						
Time	Depth (gpm) (gal.) (°C) (units)				(units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)					
1418			0	17.00	697,50	4082	amber clear					
14 19			2	13.09	7.57		amber, clear					
(42)			3	13.78	7.61	4420	17					
1423			4	14.09	7.63	4660						
1475			5	1407	7.62	4-40	,					
1426			G	14.53	1							
1426			フ	14,97	7.65	4440	17					
1429	Sample .		8	14.45	7.66	4470	3 11					
							705= 2872 m/L					
	pH (CALIBRAT	ION (choo	se two)		Model or U						
Buffer Sc	olution	pH 4.	0 pH 7	.0 pH 10	0.0		YSI 556					
Tempera	ture C											
Instrume	nt Reading	3										
SPECIF	IC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or U	Jnit No.:					
KCL Solu	ıtion (μS/cn	n=μmhos/cr	n)									
Tempera	ture C											
Instrume	nt Reading	3										
Notes:					•							
			to the same of the									
\\sf3\ppingree	\$\FORMATS\V	VELL SAMPLI	NG Record.do	c								

Well ID: MW-ZO								Initial Depth to Water: 2,22					
Sample	1D: Min - 20)-2006/3	Duplica	te IC);			Depth to Water after Sampling:					
Sample	Depth: MI	D SCREE	EN					Total Depth to Well:					
Project a	and Task	No: <u>932</u> 9	0.000.0	23				Well Diameter:					
Project I	Name: <u>SF</u>	PI Arcata	1					Total					
Date:	3/7/ 106	3						Volume Removed:					
Sampled	d By: !	MAH/MK						_					
Method	of Purgin	g: <u>Low l</u>	Flow					_					
Method	of Sampli	ng: <u>Low</u>	Flow					_					
Time	Intake Depth	Rate (gpm))	Temp. (°C)	pH (unit		Specif Electric Conducta (µS/cm	al ance	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE	Remarks (color, turbidity, and sediment	
916		300 %	0	1	2.24	7.0	6	30	9	213	-16.5	Clear	
918			0.6	L	1.96	6.9	3	300	7	1.13	700	7.	
920			151		1209	6.8	79	308	3	0.96	-157		
971			1.56	-	12.06	6.8	7	308	2	0.95	-21.4	1,	
922			1.66		1201	68	35	308			-239	17	
923			2.16	-	12.01	6.8	4	308		0.50	-279	* 1	
924			7,00	-	11.75	6.8	4	310			-30.6		
925			2.7		1.54	6.82		3 !!			-32.1		
926	500ge		3.0 L	/	11.47	6.8	\$	3/2		0.55	-35.0	7-05=202mg/L	
	,												
								-					
	***************************************	рН	CALIBR	ATI	ON (cho	ose tw	vo)				Model or	Unit No.:	
Buffer So	lution			рН	4.0	pH 7.0	0	pH 10.0	0		1 1	I 556	
Field Ten	nperature	°C] / /-		
Instrumer	nt Reading)									/		
	SPECIF	IC ELEC	TRICAL	COI	NDUCTA	NCE -	- CAI	LIBRATI	ON		Model or	Unit No.:	
KCL Solut	tion (μS/cr	n=µmhos	/cm)										
Field Tem	perature °	С											
Instrument Reading													
REDOX CALIBRATION DISSOLVED OX								YGEN C	ALIE	BRATION	Notes:		
Standard Solution 468 mV Salinit													
Field Temperature °C Altit)							
Instrumer	nt Reading	1			Instrum	ument Reading							
Model or Unit No.: Model or Unit No.													
Ag/AgCl Electrode (SSCE)													
G-\FORMAT	CWELL CAN	(DI Pas DO	doo		1								

Well ID:	Mu	1-21					Initial De	pth to Wa	ter:3	.79
Sample	ID: MW-	21-7cm	Dupli	cate II	D: MW-	A-ZOU	€ Depth to		er Sampling	
Sample	Depth: MI	ID SCRI	EEN				Total De	pth to Wel	l:	
Project a	and Task	No: <u>93</u>	29.000.	0 23				meter: 7		
Project I	Name: <u>SF</u>	PI Arca	ta				Total			/
Date:	3/24 106	6					Volume 	Removed:	_3_	<u></u>
Sampled	l By:	MAH/MŁ	<							
Method	of Purgin	g: <u>Lov</u>	Flow							
Method	of Sampli	ng: <u>Lov</u>	v Flow				_			
Time	Intake Depth	Rate (gpm mu/mi) (g	um. 'ol. al.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Dissolved Oxygen (mg/l)	Redox Potential (mV; SSCE)	Pemarks (color, turbidity, and sediment)
1047		600	مرا الم	>	10.58	697		1.33	-125.0	Clear
1049				24	10.15	6.66	1030	0.69	-109.9	· .
1050			1.	8L	10.08	6.64	1073	0.54	-1-76	,
1051			2,	46	10.01	6.64	1023	0.50	-104 !	
5201	Sample		3,	ol	10.0!	6.64	1074	9,0°	JO5.6	TPS-666-10/L
		p	H CALI	BRATI	ION (cho	ose two)			Model or	Unit No :
Buffer So	lution			T		pH 7.0	pH 10.0		Model of	Offit No.:
	nperature	°C		P.,	1.0		pri 10.0		Y 5	I 556
	nt Reading			-						
			CTRIC	AL CO	NDUCTA	NCE C	ALIBRATION		Model or	Hait No.
KCL Solut	tion (μS/cr				IDUCIA	TICL - C/	ALIBRATION		Wiodel of	Onit No.:
	perature °									
	t Reading									
	EDOX CA		TION		DISSO	N VED O	XYGEN CALIE	PRATION	Neterin	
Standard			468 m\	/	Salinity		ATGEN CALIE	SKATION	Notes:	= 600 mc/mi
	perature				Altitude					- ECI ML/MIL
	nt Reading				 	ent Read	ina			
Model or					+	or Unit No				
	Electrode	(SSCE)								
G:\FORMAT	S\WELL SAM	API Rec. D	O doc							

Well ID:	MW-22					_ Initial Depth to Water: 4.38					
1	D: <u>MW-22-</u>		Ouplicate I	D:		-	er after Sampling:				
Sample [Depth:	700				Total Depth to	o Well:9.3 (
Project a	nd Task N	o.: <u>9329.0</u> 0	00.0 32			Well Diameter	r:Z				
Project N	lame: <u>SP</u>	I ARCATA	.			1 Casing/Borehole Volume:					
Date: _03	3/ ²³ /06										
Sampled	By: MAH			,		(Circle one) (Casing)Borehole Volumes:					
Method o	of Purging:	DISPOSA	ABLE TEF	LON BAILE	ER	•	Porehele 7				
Method o	of Samplin	g: <u>DISPO</u>	SABLE TE	FLON BA		Total Casing/Borehole Volumes Removed:					
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)				
912				14.10	6.05	709	Clear				
913			1.5	14.06	6.06	683	U				
914			2	13.98	5.97	767	11				
915	ANT'E		2.5	13.93	5.96	725	U/				
	í										
	pH (CALIBRAT	ION (choo	se two)		Model or l	Unit No.:				
Buffer Sc	olution	pH 4	.0 pH 7	.0 pH 10	0.0	,	()				
Tempera	ture C					7	5.5 5 5 6				
Instrume	nt Reading	3				1					
SPECIF	FIC ELECT	RICAL CO	NDUCTAN	NCE - CAL	IBRATION	Model or l	Unit No.:				
KCL Solu	ution (μS/cr	n=μmhos/c	m)								
Tempera	ture C										
Instrume	nt Reading	3									
Notes:											
					-						

Well ID: MW-23					Initial Depth to Water: 3,99										
Sample ID: MW-23-200603 Duplicate ID:						Depth to Water after Sampling:									
Sample Depth: TOC						Total Depth to Well:									
Project and Task No.: 9329.000.0 32 Project Name: SPI ARCATA Date: 03/23/06 Sampled By: MAH						Well Diameter: Z '' 1 Casing/Borehole Volume: O 8 9									
										(Ctrcle one) *Casing/Borehole Volumes:					
						Method	of Purging:	DISPOS	ABLE TEF						LON BAIL
						Method of Sampling: <u>DISPOSABLE TEFLON BA</u>					Total Casing/Borehole 2.75 Volumes Removed:				
Time	Intake Depth	Rate (gpm)	Cum. Vol. (gal.)	Temp. (°C)	pH (units)	Specific Electrical Conductance (µS/cm)	Remarks (color, turbidity, and sediment)								
~Gin			0	13.71	6.25	3490	yellow a	ear or	op, sal and						
948			I	13.35	6.47	3 700	brown,	cloud	4						
951			Z	13.56	6.55	4140	11	1/	for cecharge						
958			7.5	13.70	6.60	4300	1/	1							
1000	ing'c		2.75	13,60	6.65	4120	11	' /	(1						
pH CALIBRATION (choose two)						Model or U	Jnit No.:		·						
Buffer Solution pH 4.0		.0 pH 7	pH 7.0 pH 10.0			SI 9	CC								
Tempera	iture C						14								
Instrume	ent Reading	9													
SPECI	FIC ELECT	RICAL CO	NDUCTAN	ICE – CAL	IBRATION	Model or U	Jnit No.:								
KCL Soli	ution (μS/cn	n=μmhos/cı	m)				(55 4-	(•						
Tempera	ture C														
Instrume	ent Reading	,													
Notes:															
-															

YSI 556MPS RENTAL **CALIBRATION CERTIFICATE**

SERVICE TECHNICIAN: 60

DATE: 3/20/06

INSTRUMENT INFORMATION

RENTAL I.D. NUMBER: YSI-556. 14

SERIAL#: UZO1218

CUSTOMER.

CALIBR	ATION	INFORM	MATION

PARAMETERS:	STANDARDS:	PASS ()	LOT#
1. CONDUCTIVITY	μMhos		5000
2. pH ZERO	pH 7		5210
3. pH SLOPE	pH 4	_	5278
pH SLOPE	pH 10	_	5100
4. DISSOLVED OXYGEN	Air Calibration Barometric pressure = 760mmHg		N/A
5. REDOX (ORP)	_27 _mV (YSI Zobell solution)	_	701060

APPENDIX B

Laboratory Reports and Chain-of-Custody Records for Groundwater Samples

Laboratory reports in order of appearance:

Alpha Analytical Work Order: A603729

Friedman & Bruya Project: 603279

Alpha Analytical Work Order: A603726

STL Submission (sub-lab to Alpha A603726): 720-2842-1

K-Prime Submission (sub-lab to Alpha A603726): 9984

Friedman & Bruya Project: 603278

Frontier Analytical Project: 3781

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax: (707) 468-5267

12 April 2006

Geomatrix Consultants

Attn: Ross Steenson

2101 Webster Street, 12th Floor

Oakland, CA 94612

RE: SPI 9329

Work Order: A603729

Enclosed are the results of analyses for samples received by the laboratory on 03/24/06 16:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen A. Daly For Sheri L. Speaks

Project Manager

This represents an amended copy of the original report

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 8

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Ross Steenson

Report Date: 04/12/06 10:50

Project No: SPI 9329 Task 32

Project ID: SPI 9329

Receipt Date/Time

Client Code

Client PO/Reference

Order Number A603729

03/24/2006 16:20

GEOMAT

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-200603	A603729-01	Water	03/23/06 12:25	03/24/06 16:20
MW-2-200603	A603729-02	Water	03/23/06 14:11	03/24/06 16:20
MW-6-200603	A603729-03	Water	03/22/06 15:46	03/24/06 16:20
MW-7-200603	A603729-04	Water	03/24/06 12:20	03/24/06 16:20
MW-8-200603	A603729-05	Water	03/22/06 13:52	03/24/06 16:20
MW-9-200603	A603729-06	Water	03/22/06 14:10	03/24/06 16:20
MW-13D-200603	A603729-07	Water	03/22/06 14:59	03/24/06 16:20
MW-14-200603	A603729-08	Water	03/23/06 11:24	03/24/06 16:20
MW-15D-200603	A603729-09	Water	03/22/06 15:26	03/24/06 16:20
MW-16D-200603	A603729-10	Water	03/22/06 14:29	03/24/06 16:20
MW-20-200603	A603729-11	Water	03/24/06 09:26	03/24/06 16:20
MW-21-200603	A603729-12	Water	03/24/06 10:52	03/24/06 16:20
MW-A-200603	A603729-13	Water	03/24/06 00:00	03/24/06 16:20

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 8

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Ross Steenson

Report Date: 04/12/06 10:50 Project No: SPI 9329 Task 32

Project ID: SPI 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603729

03/24/2006 16:20

GEOMAT

11000.1	03/24/2000 10.20			CONDIT				
		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOT
MW-1-200603 (A603729-01)			Sample Typ	e: Water		Sampled: 03/23/06 12:2	5	
Chlorinated Phenols by Canadia	n Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	**	**	**	"	ND "	1.0	
2,3,4,6-Tetrachlorophenol	**	**	"	**	**	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	"	n	n	**	ND "	1.0	
Pentachlorophenol	**	**	11	н	H	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		118 %	70-124	
MW-2-200603 (A603729-02)			Sample Typ	pe: Water		Sampled: 03/23/06 14:1	1	
Chlorinated Phenols by Canadia	n Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	11	"	"	**	"	ND"	1.0	
2,3,4,6-Tetrachlorophenol	II .	**	"	**	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	H	**	"	"	n	ND "	1.0	
Pentachlorophenol	"	**	"	"	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		103 %	70-124	
MW-6-200603 (A603729-03)			Sample Ty	pe: Water		Sampled: 03/22/06 15:4	6	
Chlorinated Phenols by Canadia	n Pulp Method							
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	**	"	"		**	ND "	1.0	
2,3,4,6-Tetrachlorophenol	н	**	"	"	"	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	"	"	**	"	ND "	1.0	
Pentachlorophenol	"	"	"	н	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		82.8 %	70-124	
MW-7-200603 (A603729-04)			Sample Ty	pe: Water		Sampled: 03/24/06 12:2	20	
Chlorinated Phenols by Canadia	n Pulp Method					•		
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l	1.0	
2,3,5,6-Tetrachlorophenol	н	"	"	**	*1	8.7 "	1.0	
2,3,4,6-Tetrachlorophenol	"	**	**	03/30/06	10	41 "	10	
2,3,4,5-Tetrachlorophenol	**	,,	**	03/29/06	1	3.7 "	1.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 8

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612

Attn: Ross Steenson

Report Date: 04/12/06 10:50 Project No: SPI 9329 Task 32

Project ID: SPI 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603729

03/24/2006 16:20

GEOMAT

Alpho Applytical Laboratories Inc

		Alpha A	Analytical	Laborato	ries, Inc.		
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL NO
MW-7-200603 (A603729-04)			Sample Ty	pe: Water		Sampled: 03/24/06 12:	20
Chlorinated Phenols by Canadian Pu	lp Method (cont'	d)		•		•	
Pentachlorophenol	EnvCan	"	**	03/30/06	100	1900 "	100
Surrogate: Tribromophenol	"	"	"	03/29/06		88.8 %	70-124
MW-8-200603 (A603729-05)			Sample Ty	pe: Water	!	Sampled: 03/22/06 13:	52
Chlorinated Phenols by Canadian Pu	lp Method						
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l	1.0
2,3,5,6-Tetrachlorophenol	n n	"	**	**	"	ND "	1.0
2,3,4,6-Tetrachlorophenol	"	"	"	"	"	ND "	1.0
2,3,4,5-Tetrachlorophenol	**	"	"	"	**	ND "	1.0
Pentachlorophenol	**	"	"	"	"	ND "	1.0
Surrogate: Tribromophenol	"	"	"	"		86.8 %	70-124
MW-9-200603 (A603729-06)			Sample Ty	pe: Water		Sampled: 03/22/06 14:	10
Chlorinated Phenols by Canadian Pu	lp Method						
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l	1.0
2,3,5,6-Tetrachlorophenol	"	"	"	**	**	ND "	1.0
2,3,4,6-Tetrachlorophenol	"	**	**	"	"	ND "	1.0
2,3,4,5-Tetrachlorophenol		"	"	"	"	ND "	1.0
Pentachlorophenol		**	"	"	"	ND "	1.0
Surrogate: Tribromophenol	"	"	"	"		81.6 %	70-124
MW-13D-200603 (A603729-07)			Sample Ty	pe: Water		Sampled: 03/22/06 14:	59
Chlorinated Phenols by Canadian Pu	lp Method						
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l	1.0
2,3,5,6-Tetrachlorophenol	"	"	**	**	"	ND "	1.0
2,3,4,6-Tetrachlorophenol	**	"	"	"	**	ND "	1.0
2,3,4,5-Tetrachlorophenol	**	"	"	"	"	ND "	1.0
Pentachlorophenol	"	"	"	, н	"	ND "	1.0
Surrogate: Tribromophenol	"	"	"	"		86.0 %	70-124
MW-14-200603 (A603729-08)			Sample Ty	pe: Water		Sampled: 03/23/06 11:	24

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.con: • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 8

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Ross Steenson

Report Date: 04/12/06 10:50 Project No: SPI 9329 Task 32

Project ID: SPI 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603729	03/24/2006 16:20		GF	EOMAT					
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	ВАТСН	PREPARED	ANALYZED	DILUTION	N RESULT		PQL	NOTE
MW-14-200603 (A603729-08)			Sample Ty	pe: Water		Sampled: 03/23/06 11	1:24		
Chlorinated Phenols by Canadia	an Pulp Method								
-2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l		1.0	
2,3,5,6-Tetrachlorophenol	"	11	"	**	**	ND "		1.0	
2,3,4,6-Tetrachlorophenol	"		"	**	"	ND "		1.0	
2,3,4,5-Tetrachlorophenol	"	**	tr	**	H	ND "		1.0	
Pentachlorophenol	"	"	"	"	"	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		90.8 %	70-124		
MW-15D-200603 (A603729-09	9)		Sample Ty	pe: Water		Sampled: 03/22/06 15	5:26		
Chlorinated Phenols by Canadia	an Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l		1.0	
2,3,5,6-Tetrachlorophenol	11	**	н	"	**	ND "		1.0	
2,3,4,6-Tetrachlorophenol	n n	**	"	"	**	ND "		1.0	
2,3,4,5-Tetrachlorophenol	11	"	**	"	**	ND "		1.0	
Pentachlorophenol	"	"	"	**		ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		95.2 %	70-124		-
MW-16D-200603 (A603729-10	0)		Sample Ty	pe: Water		Sampled: 03/22/06 14	4:29		
Chlorinated Phenols by Canadia	an Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	l	ND ug/l		1.0	
2,3,5,6-Tetrachlorophenol	"	**	"	"	Ħ	ND "		1.0	
2,3,4,6-Tetrachlorophenol	"	**	**	"	*1	ND "		1.0	
2,3,4,5-Tetrachlorophenol	**	"	**	**	"	ND "		1.0	
Pentachlorophenol	**	**	"	"	"	ND "		1.0	
Surrogate: Tribromophenol	"	"	"	"		94.8 %	70-124		
MW-20-200603 (A603729-11)			Sample Ty	pe: Water		Sampled: 03/24/06 0	9:26		
Chlorinated Phenols by Canadia	an Pulp Method								
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	ND ug/l		1.0	
2,3,5,6-Tetrachlorophenol	"	"	"	**	"	ND "		1.0	
2,3,4,6-Tetrachlorophenol	н	"	"	11	"	ND "		1.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2,3,4,5-Tetrachlorophenol

Bruce Gove Laboratory Director ND"

4/12/2006

1.0

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 5 of 8

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612

Report Date: 04/12/06 10:50

Project ID: SPI 9329

Project No: SPI 9329 Task 32

Attn: Ross Steenson

Client Code

Client PO/Reference

Order Number

Receipt Date/Time

A603729

03/24/2006 16:20 **GEOMAT**

		Alpha A	Analytical	Laborato	ries, Inc.			
	METHOD	ВАТСН	PREPARED	ANALYZED	DILUTION	N RESULT	PQL	NOTE
MW-20-200603 (A603729-11)			Sample Ty	pe: Water		Sampled: 03/24/06 09	:26	
Chlorinated Phenols by Canadian Pe	ulp Method (cont'	d)						
Pentachlorophenol	EnvCan	"	"	03/29/06	**	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		86.0 %	70-124	
MW-21-200603 (A603729-12)			Sample Ty	pe: Water		Sampled: 03/24/06 10	:52	
Chlorinated Phenols by Canadian P	ulp Method							
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	1.5 ug/l	1.0	
2.3,5,6-Tetrachlorophenol	**	**	"	03/30/06	10	41 "	10	
2,3,4,6-Tetrachlorophenol	**	**	"	**	**	180 "	10	
2,3,4,5-Tetrachlorophenol	"	"	**	03/29/06	1	8.9 "	1.0	
Pentachlorophenol	н	"	**	03/30/06	1000	13000 "	1000	
Surrogate: Tribromophenol	"	"	"	03/29/06		92.4 %	70-124	
MW-A-200603 (A603729-13)			Sample Ty	pe: Water		Sampled: 03/24/06 00	:00	
Chlorinated Phenols by Canadian P	ulp Method							
2,4,6-Trichlorophenol	EnvCan	AC62811	03/28/06	03/29/06	1	1.4 ug/l	1.0	
2,3,5,6-Tetrachlorophenol	"	"	"	03/30/06	10	41 "	10	
2,3,4,6-Tetrachlorophenol	"	"	"	**	**	190 ''	10	
2,3,4,5-Tetrachlorophenol	**	**	**	03/29/06	1	8.8 "	1.0	
Pentachlorophenol	"	"	**	03/30/06	1000	14000 "	1000	
Surrogate: Tribromophenol	"	"	"	03/29/06		94.8 %	70-124	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 8

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Ross Steenson

Report Date: 04/12/06 10:50

Project ID: SPI 9329

Project No: SPI 9329 Task 32

Order Number

Receipt Date/Time

Client Code **GEOMAT**

Client PO/Reference

A603729

03/24/2006 16:20

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AC62811 - Solvent Extraction										
Blank (AC62811-BLK1)				Prepared:	03/28/06	Analyzed	1: 03/29/06			
2,4,6-Trichlorophenol	ND	1.0	ug/l							
2,3,5,6-Tetrachlorophenol	ND	1.0	**							
2,3,4,6-Tetrachlorophenol	ND	1.0	"							
2,3,4,5-Tetrachlorophenol	ND	1.0	"							
Pentachlorophenol	ND	1.0	**							
Surrogate: Tribromophenol	21.7		п	25.0		86.8	70-124			
LCS (AC62811-BS1)				Prepared	03/28/06	Analyzed	1: 03/29/06			
2,4,6-Trichlorophenol	5.49	1.0	ug/l	5.00		110	81-120			
2,3,5,6-Tetrachlorophenol	5.98	1.0	"	5.00		120	78-108			QL-03
2,3,4,6-Tetrachlorophenol	5.68	1.0	"	5.00		114	76-108			QL-03
2,3,4,5-Tetrachlorophenol	5.52	1.0	"	5.00		110	80-116			
Pentachlorophenol	5.53	1.0	"	5.00		111	86-109			QL-03
Surrogate: Tribromophenol	21.2		**	25.0		84.8	70-124		and the second second first the second second	
Matrix Spike (AC62811-MS1)	Sou	rce: A603	729-09	Prepared	: 03/28/06	Analyzed	d: 03/29/06			
2,4,6-Trichlorophenol	5.79	1.0	ug/l	5.00	ND	116	75-125			
2,3,5,6-Tetrachlorophenol	5.92	1.0	"	5.00	ND	118	69-115			QM-01
2,3,4,6-Tetrachlorophenol	5.37	1.0	"	5.00	ND	107	66-117			
2,3,4,5-Tetrachlorophenol	5.48	1.0	**	5.00	ND	110	70-115			
Pentachlorophenol	5.23	1.0	**	5.00	ND	105	55-124			
Surrogate: Tribromophenol	29.7		н	25.0		119	70-124			
Matrix Spike Dup (AC62811-MSD1)	Sou	rce: A603	729-09	Prepared	: 03/28/06	Analyze	d: 03/29/06			
2,4,6-Trichlorophenol	5.96	1.0	ug/l	5.00	ND	119	75-125	2.89	20	
2,3,5,6-Tetrachlorophenol	6.42	1.0	11	5.00	ND	128	69-115	8.10	20	QM-0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 8

Geomatrix Consultants 2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Ross Steenson

Report Date: 04/12/06 10:50

Project No: SPI 9329 Task 32

Project ID: SPI 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603729

03/24/2006 16:20

GEOMAT

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AC62811 - Solvent Extraction										
Matrix Spike Dup (AC62811-MSD1)	Sou	rce: A603	729-09	Prepared:	03/28/06	Analyzed	1: 03/29/06			
2,3,4,6-Tetrachlorophenol	5.83	1.0	*1	5.00	ND	117	66-117	8.21	20	
2,3,4,5-Tetrachlorophenol	5.99	1.0	**	5.00	ND	120	70-115	8.89	20	QM-01
Pentachlorophenol	5.65	1.0	**	5.00	ND	113	55-124	7.72	20	
Surrogate: Tribromophenol	22.3		н	25.0	The State of the S	89.2	70-124			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 8 of 8

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612

Attn: Ross Steenson

Report Date: 04/12/06 10:50

Project No: SPI 9329 Task 32

Project ID: SPI 9329

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603729

03/24/2006 16:20

GEOMAT

Notes and Definitions

QM-01 The spike recovery for this QC sample is outside of established control limits possibly due to a sample matrix

interference.

Although the LCS/LCSD recovery for this analyte is outside of in-house developed control limits, it is within QL-03

the EPA recommended range of 70-130%.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

PQL Practical Quantitation Limit

COMMENTS ADDITIONAL. **Geomatrix** 9 EUR 10008 ナロ 58652090 No. of Containers 3 dsw/sw ¥ Cooled **}**-Preservative Type SITE SPECIFIC GLOBAL ID NO Tel 707 444 7800 Fay 707 444 7848 Filtered GEOTRACKER REQUIRED Soil (S), Water (W), or Other (O) Eureka, California 95501-0488 525 Second Street, Suite 203 CONTAINER
TYPE AND SIZE DATE: DATE TIME TOTAL NUMBER OF CONTAINERS 15. 2 SAMPLING COMMENTS 4004 CLIENT INFORMATION ANALYSES LABORATORY NAME: 141044 LABORATORY CONTACT LE L' TOT LIES -CHEL DATE TIME RECEIVED BY LABORATORY ADDRESS 704 170 PARTIED NAME
COMPANY PRINTED NAME PRINTED NAME SIGNATURE SIGNATURE COMPANY י בואפרין יכוש 124/02 > かんのかり 709000-1-A-£09007-091- my MW-A-200603 Z 09002-02-MV AU-7-200603 5.00002-12-MW AU-17 200603 403002-8-NW MW-15D-700603 AW-9-7-00603 209002-9-MW 509002-2-mW MW-1-200603 100/24 SAMPLE NUMBER 6.30 SAMPLERS (SIGNATURE) CHAIN-OF-CUSTODY RECORD 0-1-0 FOF 9 COMPANY C CONAtox SIGNATURE 71 W. P. T. L. PROJECT NUMBER G > 2 1 RELINQUISHED BY: RESULTS TO KEIN PRINTED NAME: + 1/1 1274 2521 00/22/2 91,51 11/22/6 0121 90/12/2 453/06 1124 6211 SAMPLE SHIPMENT METHOD 6541 90/22/2 01/11/07/22/6 9251 30/22/6 TIME 325 30/50 SIGNATURE, 11213 7521 00/40/ 1151 90/22/6 PROJECT NAME: PRINTED NAME PRINTED NAME 3/22/2 31. 15/6 3/23/06 SIGNATURE DATE COMPANY VIALORIA

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

April 11, 2006

Mike Keim, Project Manager Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612

Dear Mr. Keim:

Included are the results from the testing of material submitted on March 27, 2006 from the 9329 task 23, F&BI 603279 project. There are 21 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GMC0411R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 27, 2006 by Friedman & Bruya, Inc. from the Geomatrix Consultants, Inc. 9329 task 23, F&BI 603279 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Geomatrix Consultants, Inc.
603279-01	MW-01-200603
603279-02	MW-02-200603
603279-03	MW-03-200603
603279-04	MW-05-200603
603279-05	MW-07-200603
603279-06	MW-14-200603
603279-07	MW-20-200603
603279-08	MW-21-200603
603279-09	MW-A-200603

The recovery of phenol and 2,3 dichlorophenol were outside the default control limits for the laboratory control samples. All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-01-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/30/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.
Project: 9329 task 23, F&BI 603279
Lab ID: 603279-01
Data File: 033021.D
Instrument: GCMS3

Instrument: GC Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	51	16	92
Phenol-d6	39	10	91
2,4,6-Tribromophenol	102	50	150

Compounds:	Concentration ug/L (ppb)
Phenol	<1
2-Chlorophenol	<2
2,4-Dichlorophenol	<1
2,3-Dichlorophenol	<1
2.6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	<2
2.5-Dichlorophenol	<1
2,3,5-Trichlorophenol	<1
2.4,6-Trichlorophenol	<1
2,4,5-Trichlorophenol	<1
2,3,4-Trichlorophenol	<1
3,5-Dichlorophenol	<1
2,3,6-Trichlorophenol	<1
3,4-Dichlorophenol	<1
2,3,4,6-Tetrachlorophenol	<1
2,3,4,5-Tetrachlorophenol	<1
2,3,5,6-Tetrachlorophenol	<1
3,4,5-Trichlorophenol	<1
Pentachlorophenol	<]

ENVIRONMENTAL CHEMISTS

Operator:

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-02-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/28/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.
Project: 9329 task 23, F&BI 603279
Lab ID: 603279-02
Data File: 032811.D
Instrument: GCMS3

YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	54	16	92
Phenol-d6	36	10	91
2,4,6-Tribromophenol	99	50	150

Compounds:	Concentration ug/L (ppb)
•	
Phenol	<1
2-Chlorophenol	<2
2,4-Dichlorophenol	<1
2,3-Dichlorophenol	<1
2.6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	<2
2,5-Dichlorophenol	<1
2,3,5-Trichlorophenol	<1
2.4,6-Trichlorophenol	< 1
2,4,5-Trichlorophenol	< 1
2,3,4-Trichlorophenol	<1
3,5-Dichlorophenol	<1
2,3,6-Trichlorophenol	<1
3,4-Dichlorophenol	<1
2,3,4,6-Tetrachlorophenol	<1
2,3,4,5-Tetrachlorophenol	< 1
2,3,5,6-Tetrachlorophenol	<1
3,4,5-Trichlorophenol	<1
Pentachlorophenol	2

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID:	MW-03-200603
Date Received:	03/27/06
Date Extracted:	03/27/06
Date Analyzed:	03/28/06
Matrix:	Water
Units:	ug/L (ppb)

Geomatrix Consultants, Inc.
9329 task 23, F&BI 603279
603279-03
032812.D
GCMS3
YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	59	16	92
Phenol-d6	39	10	91
2,4,6-Tribromophenol	102	50	150

Compounds:	Concentration ug/L (ppb)
Phenol	<1
2-Chlorophenol	<2
2,4-Dichlorophenol	<1
2.3-Dichlorophenol	<1
2,6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	<2
2,5-Dichlorophenol	<1
2.3,5-Trichlorophenol	<1
2.4.6-Trichlorophenol	< 1
2,4,5-Trichlorophenol	<1
2.3,4-Trichlorophenol	< 1
3,5-Dichlorophenol	< 1
2,3,6-Trichlorophenol	<1
3,4-Dichlorophenol	<1
2,3,4,6-Tetrachlorophenol	<1
2.3,4,5-Tetrachlorophenol	<1
2.3.5,6-Tetrachlorophenol	< 1
3,4,5-Trichlorophenol	<1
Pentachlorophenol	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-05-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/28/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.
Project: 9329 task 23, F&BI 603279
Lab ID: 603279-04
Data File: 032813.D
Instrument: GCMS3
Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	53	16	92
Phenol-d6	35	10	91
2,4,6-Tribromophenol	97	50	150

Compounds:	Concentration ug/L (ppb)
Phenol	<1
2-Chlorophenol	<2
2.4-Dichlorophenol	<1
2,3-Dichlorophenol	<1
2,6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	<2
2,5-Dichlorophenol	<1
2.3.5-Trichlorophenol	<1
2.4,6-Trichlorophenol	<1
2,4,5-Trichlorophenol	<1
2,3,4-Trichlorophenol	<1
3,5-Dichlorophenol	<]
2,3,6-Trichlorophenol	<1
3,4-Dichlorophenol	<1
2,3,4,6-Tetrachlorophenol	<1
2.3,4,5-Tetrachlorophenol	<1
2.3,5.6-Tetrachlorophenol	<1
3.4,5-Trichlorophenol	<1
Pentachlorophenol	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semiyolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-07-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/30/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.

Project: 9329 task 23, F&BI 603279

Lab ID: 603279-05

Data File: 033022 D

Data File: 033022.D Instrument: GCMS3 Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	56	16	92
Phenol-d6	40	10	91
2,4,6-Tribromophenol	76	50	150

Compounds:	Concentration ug/L (ppb)
Phenol	<1
2-Chlorophenol	<2
2,4-Dichlorophenol	<1
2,3-Dichlorophenol	<1
2.6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	32 ve
2,5-Dichlorophenol	<1
2,3,5-Trichlorophenol	< 1
2,4,6-Trichlorophenol	< 1
2,4,5-Trichlorophenol	4.5
2,3,4-Trichlorophenol	<1
3,5-Dichlorophenol	1.2
2,3,6-Trichlorophenol	<1
3,4-Dichlorophenol	38 ve
2,3,4,6-Tetrachlorophenol	9.7 ve
$2.3,4,5$ - $\pm 2.3,5,6$ -Tetrachlorophen	ol 26 ve
3,4,5-Trichlorophenol	7.5 ve
Pentachlorophenol	99 ve

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

Note: 2,3,4,5-tetrachlorophenol and 2,3,5,6-tetrachlorophenol coelute due to the presence of high levels of material.

ENVIRONMENTAL CHEMISTS

Operator:

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-07-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 04/06/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.
Project: 9329 task 23. F&BI 603279

Lab ID: 603279-05 1/5

Data File: 040609.D

Instrument: GCMS3

YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	56	16	92
Phenol-d6	39	10	91
2,4,6-Tribromophenol	114	50	150

Concentration
ug/L (ppb)
<5
< 10
< 5
<5
<5
33 ve
< 5
< 5
<5
< 5
<5
<5
< 5
40 ve
8.9
4 j
25
15
270 ve

Note: The sample was diluted due to the presence of high levels of material. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

j - The result is below normal reporting limits. The value reported is an estimate.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-07-200603 Client:
Date Received: 03/27/06 Project:
Date Extracted: 03/27/06 Lab ID:
Date Analyzed: 03/29/06 Data File:
Matrix: Water Instrumer:
Units: ug/L (ppb) Operator:

Client: Geomatrix Consultants. Inc.
Project: 9329 task 23. F&BI 603279
Lab ID: 603279-05 1/10
Data File: 032918.D

Instrument: GCMS3
Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	56	16	92
Phenol-d6	43	10	91
2,4,6-Tribromophenol	108	50	150

	Concentration
Compounds:	ug/L (ppb)
Phenol	<10
2-Chlorophenol	<20
2,4-Dichlorophenol	<10
2,3-Dichlorophenol	<10
2,6-Dichlorophenol	<10
$3\hbox{-}Chlorophenol + 4\hbox{-}Chlorophenol$	37
2,5-Dichlorophenol	<10
2,3,5-Trichlorophenol	<10
2,4,6-Trichlorophenol	<10
2,4,5-Trichlorophenol	<10
2.3.4-Trichlorophenol	<10
3,5-Dichlorophenol	<10
2,3,6-Trichlorophenol	<10
3,4-Dichlorophenol	41
2,3,4,6-Tetrachlorophenol	<10
2,3,4,5-Tetrachlorophenol	<10
2,3,5,6-Tetrachlorophenol	24
3,4,5-Trichlorophenol	15
Pentachlorophenol	360 ve

Note: The sample was diluted due to the presence of high levels of material. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-07-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/29/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc.
Project: 9329 task 23, F&BI 603279
Lab ID: 603279-05 1/500

Data File: 032910.D Instrument: GCMS3 Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	0 vo	16	92
Phenol-d6	0 vo	10	91
2,4,6-Tribromophenol	0 vo	50	150

	Concentration
Compounds:	ug/L (ppb)
Phenol	< 500
2-Chlorophenol	<1,000
2,4-Dichlorophenol	< 500
2.3-Dichlorophenol	< 500
2.6-Dichlorophenol	< 500
3-Chlorophenol+4-Chlorophenol	<1,000
2,5-Dichlorophenol	< 500
2.3.5-Trichlorophenol	< 500
2,4.6-Trichlorophenol	< 500
2,4,5-Trichlorophenol	< 500
2,3,4-Trichlorophenol	< 500
3,5-Dichlorophenol	<500
2,3,6-Trichlorophenol	< 500
3,4-Dichlorophenol	< 500
2,3,4,6-Tetrachlorophenol	< 500
2.3,4.5-Tetrachlorophenol	< 500
2,3,5.6-Tetrachlorophenol	< 500
3.4.5-Trichlorophenol	< 500
Pentachlorophenol	1,200

Note: The sample was diluted due to the presence of high levels of material. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

vo - The value reported fell outside the control limits established for this analyte.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: Date Received: Date Extracted:	MW-14-200603 03/27/06 03/27/06
Date Analyzed:	03/28/06
Matrix:	Water
Units:	ug/L (ppb)

Client:	Geomatrix Consultants, Inc.
Project:	9329 task 23, F&BI 603279
Lab ID:	603279-06
Data File:	032814.D
Instrument:	GCMS3
Operator:	YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	61	16	92
Phenol-d6	41	10	91
2,4,6-Tribromophenol	96	50	150

Compounds:	Concentration ug/L (ppb)
Phenol	<1
2-Chlorophenol	<2
2,4-Dichlorophenol	<1
2,3-Dichlorophenol	<1
2.6-Dichlorophenol	<]
3-Chlorophenol+4-Chlorophenol	<2
2,5-Dichlorophenol	<1
2,3,5-Trichlorophenol	<1
2,4,6-Trichlorophenol	<1
2.4.5-Trichlorophenol	<1
2.3,4-Trichlorophenol	<1
3,5-Dichlorophenol	<1
2,3,6-Trichlorophenol	<1
3,4-Dichlorophenol	<1
2,3,4,6-Tetrachlorophenol	<1
2,3,4,5-Tetrachlorophenol	<1
2,3,5,6-Tetrachlorophenol	<1
3.4.5-Trichlorophenol	<1
Pentachlorophenol	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

% Recovery

57

40

Client Sample ID: MW-20-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/29/06
Matrix: Water
Units: ug/L (ppb)

Surrogates:

Phenol-d6

2-Fluorophenol

Client: Geomatrix Consultants, Inc.
Project: 9329 task 23, F&BI 603279

Lab ID: 603279-07

Data File: 032905.D

Instrument: GCMS3

150

Operator: YA

Lower Upper
Limit Limit
16 92
10 91

50

2.4,6-Tribromophenol	96
Compounds:	Concentration ug/L (ppb)
Phenol	<1
2-Chlorophenol	<2
2,4-Dichlorophenol	<1
2.3-Dichlorophenol	<1
2.6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	<2
2.5-Dichlorophenol	<1
2,3,5-Trichlorophenol	<1
2,4,6-Trichlorophenol	<1
2.4.5-Trichlorophenol	< 1
2,3.4-Trichlorophenol	<1
3,5-Dichlorophenol	<1
2,3,6-Trichlorophenol	<1
3,4-Dichlorophenol	<1
2,3,4,6-Tetrachlorophenol	<1
2.3,4.5-Tetrachlorophenol	<1
2,3,5,6-Tetrachlorophenol	<1
3,4,5-Trichlorophenol	<1
Pentachlorophenol	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-21-200603 Client: Geomatrix Consultants, Inc. Project: 9329 task 23. F&BI 603279 03/27/06 Date Received: Lab ID: 603279-08 03/27/06 Date Extracted: 033024.DData File: 03/30/06 Date Analyzed: Instrument: GCMS3 Matrix: Water Operator: YAUnits: ug/L (ppb)

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	56	16	92
Phenol-d6	42	10	91
2.4.6-Tribromophenol	124	50	150

	Concentration
Compounds:	ug/L (ppb)
Phenol	1.8
2-Chlorophenol	<2
2,4-Dichlorophenol	<1
2,3-Dichlorophenol	2.1
2,6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	370 ve
2.5-Dichlorophenol	<1
2,3,5-Trichlorophenol	<1
2,4.6-Trichlorophenol	1.1
2.4.5-Trichlorophenol	9.3 ve
2.3.4-Trichlorophenol	<1
3,5-Dichlorophenol	17 ve
2.3.6-Trichlorophenol	<1
3,4-Dichlorophenol	310 ve
2,3,4,6-Tetrachlorophenol	31 ve
2.3,4.5-+-2,3,5,6-Tetrachloropher	ol 140 ve
3,4,5-Trichlorophenol	210 ve
Pentachlorophenol	240 J, ve

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

Note: 2,3,4,5-tetrachlorophenol and 2,3,5,6-tetrachlorophenol coelute due to the presence of high levels of material.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-21-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/29/06
Matrix: Water
Units: ug/L (ppb)

 Client:
 Geomatrix Consultants, Inc.

 Project:
 9329 task 23, F&BI 603279

 Lab ID:
 603279-08 1/10

 Data File:
 032916.D

Instrument: GCMS3 Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	56	16	92
Phenol-d6	42	10	91
2,4,6-Tribromophenol	104	50	150

	Concentration
Compounds:	ug/L (ppb)
Phenol	<10
2-Chlorophenol	<20
2,4-Dichlorophenol	<10
2,3-Dichlorophenol	<10
2.6-Dichlorophenol	< 10
3-Chlorophenol+4-Chlorophenol	620 ve
2.5-Dichlorophenol	<10
2,3.5-Trichlorophenol	<10
2.4.6-Trichlorophenol	<10
2.4,5-Trichlorophenol	<10
2,3,4-Trichlorophenol	<10
3,5-Dichlorophenol	17
2,3,6-Trichlorophenol	<10
3,4-Dichlorophenol	410 ve
2,3,4,6-Tetrachlorophenol	39
2.3,4.5-Tetrachlorophenol	17
2.3.5.6-Tetrachlorophenol	180 ve
3,4,5-Trichlorophenol	270 ve
Pentachlorophenol	880 ve

Note: The sample was diluted due to high levels of interfering compounds. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-21-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/29/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc. Project: 9329 task 23. F&BI 603279

Lab ID: 603279-08 1/100 Data File: 032912.D

Instrument: GCMS3 Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	0 vo	16	92
Phenol-d6	0 vo	10	91
2.4.6-Tribromophenol	0 vo	50	150

Compounds:	Concentration ug/L (ppb)
Phenol	<100
2-Chlorophenol	<200
2,4-Dichlorophenol	<100
2,3-Dichlorophenol	<100
2.6-Dichlorophenol	<100
3-Chlorophenol+4-Chlorophenol	650
2.5-Dichlorophenol	<100
2.3,5-Trichlorophenol	<100
2,4,6-Trichlorophenol	<100
2,4,5-Trichlorophenol	<100
2,3,4-Trichlorophenol	<100
3.5-Dichlorophenol	<100
2,3,6-Trichlorophenol	<100
3,4-Dichlorophenol	420
2,3,4,6-Tetrachlorophenol	<100
2,3,4,5-Tetrachlorophenol	<100
2,3,5,6-Tetrachlorophenol	170
3,4,5-Trichlorophenol	260
Pentachlorophenol	2,900 ve

Note: The sample was diluted due to the presence of high levels of material. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Geomatrix Consultants, Inc. Client Sample ID: MW-21-200603 Client: Project: 9329 task 23, F&BI 603279 03/27/06 Date Received: Lab ID: 603279-08 1/2.000 03/27/06 Date Extracted: 032908.D Data File: 03/29/06 Date Analyzed: GCMS3 Instrument: Matrix: Water YAOperator: ug/L (ppb) Units:

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	0 vo	16	92
Phenol-d6	0 vo	10	91
2,4,6-Tribromophenol	0 vo	50	150

	Concentration
Compounds:	ug/L (ppb)
Phenol	<2,000
2-Chlorophenol	<4,000
2.4-Dichlorophenol	<2,000
2.3-Dichlorophenol	< 2.000
2,6-Dichlorophenol	<2,000
3-Chlorophenol+4-Chlorophenol	<4,000
2,5-Dichlorophenol	< 2.000
2,3,5-Trichlorophenol	< 2.000
2.4.6-Trichlorophenol	<2,000
2,4,5-Trichlorophenol	< 2.000
2,3,4-Trichlorophenol	< 2.000
3,5-Dichlorophenol	< 2.000
2,3,6-Trichlorophenol	<2,000
3.4-Dichlorophenol	<2,000
2,3,4.6-Tetrachlorophenol	<2,000
2,3,4,5-Tetrachlorophenol	< 2,000
2.3,5,6-Tetrachlorophenol	<2,000
3.4,5-Trichlorophenol	< 2,000
Pentachlorophenol	7,700

Note: The sample was diluted due to the presence of high levels of material. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

vo - The value reported fell outside the control limits established for this analyte.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-A-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 03/30/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc. Project: 9329 task 23, F&BI 603279

Lab ID: 603279-09
Data File: 033023.D
Instrument: GCMS3
Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	55	16	92
Phenol-d6	40	10	91
2,4,6-Tribromophenol	112	50	150

	Concentration
Compounds:	ug/L (ppb)
Phenol	1.9
2-Chlorophenol	<2
2,4-Dichlorophenol	<1
2,3-Dichlorophenol	2.2
2.6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	290 ve
2.5-Dichlorophenol	<1
2.3.5-Trichlorophenol	<1
2.4,6-Trichlorophenol	1.2
2,4,5-Trichlorophenol	9.0 ve
2,3,4-Trichlorophenol	< 1
3,5-Dichlorophenol	18 ve
2,3,6-Trichlorophenol	<1
3,4-Dichlorophenol	290 ve
2,3,4,6-Tetrachlorophenol	33 ve
2,3,4,5-+2,3,5,6-Tetrachloropher	iol 150 ve
3,4,5-Trichlorophenol	190 ve
Pentachlorophenol	300 J, ve

J - The result for this analyte in the laboratory control samples is out of control limits. The reported concentration is an estimate.

Note: 2,3,4,5-tetrachlorophenol and 2,3,5,6-tetrachlorophenol coelute due to the presence of high levels of material.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-A-200603 Client: Geomatrix Consultants, Inc. Project: 9329 task 23, F&BI 603279 03/27/06 Date Received: 603279-09 1/10 03/27/06 Lab ID: Date Extracted: 032917.D Data File: 03/29/06 Date Analyzed: Instrument: GCMS3 Water Matrix: YAOperator: Units: ug/L (ppb)

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	54	16	92
Phenol-d6	41	10	91
2.4.6-Tribromophenol	105	50	150

Compounds:	Concentration ug/L (ppb)
Compounds.	авла (рры)
Phenol	<10
2-Chlorophenol	<20
2.4-Dichlorophenol	<10
2.3-Dichlorophenol	<10
2,6-Dichlorophenol	<10
3-Chlorophenol+4-Chlorophenol	650 ve
2.5-Dichlorophenol	<10
2,3,5-Trichlorophenol	<10
2.4.6-Trichlorophenol	<10
2,4,5-Trichlorophenol	<10
2,3,4-Trichlorophenol	<10
3.5-Dichlorophenol	19
2,3,6-Trichlorophenol	<10
3,4-Dichlorophenol	440 ve
2,3,4,6-Tetrachlorophenol	44
2,3,4,5-Tetrachlorophenol	20
2,3,5,6-Tetrachlorophenol	190 ve
3.4.5-Trichlorophenol	280 ve
Pentachlorophenol	920 ve

Note: The sample was diluted due to high levels of interfering compounds. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-A-200603
Date Received: 03/27/06
Date Extracted: 03/27/06
Date Analyzed: 04/04/06
Matrix: Water
Units: ug/L (ppb)

Client: Geomatrix Consultants, Inc. Project: 9329 task 23, F&BI 603279

Lab ID: 603279-09 1/100

Data File: 040407.D Instrument: GCMS3 Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	0 vo	16	92
Phenol-d6	0 vo	10	91
2.4,6-Tribromophenol	0 vo	50	150

	Concentration
Compounds:	ug/L (ppb)
Phenol	<100
2-Chlorophenol	<200
2,4-Dichlorophenol	<100
2,3-Dichlorophenol	<100
2,6-Dichlorophenol	<100
$3\hbox{-}Chlorophenol + 4\hbox{-}Chlorophenol$	700
2,5-Dichlorophenol	<100
2,3,5-Trichlorophenol	<1()()
2,4,6-Trichlorophenol	<100
2,4,5-Trichlorophenol	<100
2,3,4-Trichlorophenol	<100
3,5-Dichlorophenol	<100
2,3,6-Trichlorophenol	<100
3,4-Dichlorophenol	450
2,3,4,6-Tetrachlorophenol	<100
2,3,4,5-Tetrachlorophenol	<100
2,3,5,6-Tetrachlorophenol	180
3.4.5-Trichlorophenol	270
Pentachlorophenol	3,100 ve

Note: The sample was diluted due to high levels of interfering compounds. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

ve - The value reported exceeded the calibration range established for the analyte. The reported concentration is an estimate.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: MW-A-200603 Cli Date Received: 03/27/06 Pro Date Extracted: 03/27/06 La Date Analyzed: 03/29/06 Da Matrix: Water Ins Units: ug/L (ppb) Op

 Client:
 Geomatrix Consultants, Inc.

 Project:
 9329 task 23. F&BI 603279

 Lab ID:
 603279-09 1/2,000

Data File: 032909.D Instrument: GCMS3 Operator: YA

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	0 vo	16	92
Phenol-d6	0 vo	10	91
2,4,6-Tribromophenol	0 vo	50	150

	Concentration
Compounds:	ug/L (ppb)
Phenol	<2,000
2-Chlorophenol	<4,000
2,4-Dichlorophenol	< 2,000
2,3-Dichlorophenol	< 2.000
2,6-Dichlorophenol	< 2.000
$3\hbox{-}Chlorophenol + 4\hbox{-}Chlorophenol$	<4.000
2.5-Dichlorophenol	<2,000
2.3,5-Trichlorophenol	<2,000
2.4.6-Trichlorophenol	<2,000
2.4,5-Trichlorophenol	<2,000
2,3,4-Trichlorophenol	<2,000
3,5-Dichlorophenol	<2,000
2,3,6-Trichlorophenol	<2,000
3,4-Dichlorophenol	<2,000
2.3,4.6-Tetrachlorophenol	< 2.000
2,3,4,5-Tetrachlorophenol	<2,000
2.3,5,6-Tetrachlorophenol	< 2,000
3.4.5-Trichlorophenol	<2,000
Pentachlorophenol	8,000

Note: The sample was diluted due to high levels of interfering compounds. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

vo - The value reported fell outside the control limits established for this analyte.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C Sim

Client Sample ID: Method Blank
Date Received: Not Applicable
Date Extracted: 03/27/06
Date Analyzed: 03/28/06
Matrix: Water
Units: ug/L (ppb)

 $\begin{array}{lll} \mbox{Client:} & \mbox{Geomatrix Consultants. Inc.} \\ \mbox{Project:} & 9329 \ task \ 23. \ F\&BI \ 603279 \\ \mbox{Lab ID:} & 06-520 \mbox{mb} \\ \mbox{Data File:} & 032810. \mbox{D} \\ \mbox{Instrument:} & \mbox{GCMS3} \\ \mbox{Operator:} & \mbox{YA} \end{array}$

		Lower	Upper
Surrogates:	% Recovery	Limit	Limit
2-Fluorophenol	75	16	92
Phenol-d6	50	10	91
2,4,6-Tribromophenol	102	50	150

Compounds:	Concentration ug/L (ppb)
•	
Phenol	<1
2-Chlorophenol	<2
2.4-Dichlorophenol	<1
2.3-Dichlorophenol	<1
2.6-Dichlorophenol	<1
3-Chlorophenol+4-Chlorophenol	<2
2.5-Dichlorophenol	<1
2.3.5-Trichlorophenol	<1
2,4,6-Trichlorophenol	<1
2,4,5-Trichlorophenol	<1
2,3,4-Trichlorophenol	<1
3,5-Dichlorophenol	<1
2,3,6-Trichlorophenol	<1
3.4-Dichlorophenol	<1
2,3,4,6-Tetrachlorophenol	<1
2.3,4.5-Tetrachlorophenol	<1
2,3,5.6-Tetrachlorophenol	<1
3.4,5-Trichlorophenol	<1
Pentachlorophenol	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/11/06 Date Received: 03/27/06

Project: 9329 task 23, F&BI 603279

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270C SIM

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Phenol	μg/L (ppb)	7.5	34 vo	33 vo	70-130	2
2-Chlorophenol	μg/L (ppb)	15	78	80	70-130	2
2,3-Dichlorophenol	μg/L (ppb)	7.5	65 vo	69 vo	70-130	5
2,6-Dichlorophenol	μg/L (ppb)	7.5	73	78	70-130	6
3-+4-Chlorophenol	μg/L (ppb)	15	70	71	70-130	1
2,5-Dichlorophenol	μg/L (ppb)	7.5	77	82	70-130	6
2,3.5-Trichloropheno	μg/L (ppb)	7.5	87	92	70-130	5
2,4,6-Trichloropheno	μg/L (ppb)	7.5	82	89	70-130	8
2,4,5-Trichloropheno	μg/L (ppb)	7.5	83	89	70-130	7
2,3,4-Trichloropheno	μg/L (ppb)	7.5	79	85	70-130	7
3,5-Dichlorophenol	μg/L (ppb)	7.5	72	76	70-130	5
2,3,6-Trichloropheno	μg/L (ppb)	7.5	79	85	70-130	7
3,4-Dichlorophenol	μg/L (ppb)	7.5	85	87	70-130	3
2.3.4.6-Tetrachlorop	μg/L (ppb)	7.5	76	81	70-130	6
2.3.4.5-Tetrachlorop	μg/L (ppb)	7.5	73	77	70-130	5
2,3,5,6-Tetrachlorop	μg/L (ppb)	7.5	76	81	70-130	7
3,4,5-Trichloropheno	μg/L (ppb)	7.5	79	84	70-130	6
Pentachlorophenol	μg/L (ppb)	7.5	63	63	23-99	1

vo - The value reported fell outside the control limits established for this analyte.

												_	AB	120	12	2000	A S	4	P°	A.C	AS	384	-								
	:aME:	SIGNATURE:	COMPANY:	PRINTED NAME:	WIGNA - ORE:	COMPANO CONOT	_ '	PRINTED NAME:	RELINQUISHED BY				90/12/6	T	3/24/06 926	5211 90/K2/E	022) 99/42/6	408 90/12/2	7/27/06 1505	1141 90/42/2	A-D3/23/06 1225	DATE TIME	Mak The	SAMPLERS (SAMPLE SHIPMENT METHOD:	TURNAROUND TIME: 5	RESULTS TO: M, Fe	12	M	CHAIN-OF-CUSTODY RECORD
						У	4411/2010 11/2/1/242	¥_ ½	BY: DATE TIME				MW-4-20060 5		MW-20-200605	MW-14-200603	MW-07-200605	MU-05-200603	MW-03-200605	Mw-02-200603	209002-10-MW	SAMPLE NUMBER		(SIGNATURE):		Feder	2	Keim	729 tast 23	SPI Accorta	
COMPANY:	PRINTED NAME:	SIGNATURE:	COMPANY:	PRINTED NAME:	SIGNATURE:		Shan Tran		+				×	7	*	7	X	7	*	X	×	でいる: りつでがた ごりんの	ng ted prej down fro	ANALYSE	LABORATORY PHONE NUMBER: 282	LABORATORY CONTACT: E C	Seattle, WA Skilg	LABORATORY ADDRESS:	LABORATORY NAME: + Braya		603279
44.7800	Eureka, Californ	SOR Second Str				F1/1/26 US (30)	The same of the sa	SAMPLING COMMENTS:	DATE TIME TOTAL NUMBER OF CONTAINERS												1-じた	CONT TYPE A		SES				D. W.3	CLIENT INFORMATION: PACIFIC Inclustre		ME
Fax 707.444.7848	ka, California 95501-0488	aat Suita 203							AINERS:												LiterAnker W	CONTAINER Soil (S), V Vapor (V) Filtered	Vater (W), , or Other (O)		SITE SPECIFIC GLOBAL ID NO.	GEOTRACKER REQUIRED			REPORTING REQUIREM	DATE: 3/24/06	03/27/06
	Geomatrix								8				t	4	4	t	+		- f	¢.	Υ	Cooled MS/MSD No. of COI COMMENTS			4456250907	CES) NO					EUR 10011 Bos

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

03 April 2006

Geomatrix Consultants

Attn: Mike Keim

2101 Webster Street, 12th Floor

Sheri Speaks

Oakland, CA 94612

RE: SPI - (GeoMatrix)

Work Order: A603726

Enclosed are the results of analyses for samples received by the laboratory on 03/24/06 16:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri L. Speaks Project Manager

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 1 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612

Report Date: 04/03/06 09:13

Project No: 9329 Task 23

Attn: Mike Keim

Project ID: SPI - (GeoMatrix)

Client PO/Reference

Order Number A603726

Receipt Date/Time 03/24/2006 16:20

Client Code

GEOMAT

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-200603	A603726-01	Water	03/23/06 12:25	03/24/06 16:20
MW-2-200603	A603726-02	Water	03/23/06 14:11	03/24/06 16:20
MW-3-200603	A603726-03	Water	03/23/06 15:05	03/24/06 16:20
MW-5-200603	A603726-04	Water	03/24/06 08:04	03/24/06 16:20
MW-7-200603	A603726-05	Water	03/24/06 12:20	03/24/06 16:20
MW-14-200603	A603726-06	Water	03/23/06 11:24	03/24/06 16:20
MW-20-200603	A603726-07	Water	03/24/06 09:26	03/24/06 16:20
MW-21-200603	A603726-08	Water	03/24/06 10:52	03/24/06 16:20
MW-A-200603	A603726-09	Water	03/24/06 00:00	03/24/06 16:20

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

4/3/2006

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612

Report Date: 04/03/06 09:13

Project No: 9329 Task 23

Attn: Mike Keim

Project ID: SPI - (GeoMatrix)

Order Number

Receipt Date/Time 03/24/2006 16:20

Client Code **GEOMAT**

Client PO/Reference

A603726

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
MW-1-200603 (A603726-01)			Sample Ty	pe: Water		Sampled: 03/23/06 12:25		
Metals by EPA 200 Series Methods				•		•		
Calcium	EPA 200.7	AC62708	03/27/06	03/30/06	1	40 mg/l	1.0	
Magnesium	"	**	"	**	*	64 "	1.0	
Conventional Chemistry Parameters b	y APHA/EPA N	1ethods						
Bicarbonate Alkalinity as CaCO3	SM2320B	AC62503	03/25/06	03/25/06	1	830 mg/l	5.0	
Carbonate Alkalinity as CaCO3	n	"	"	•	n	ND "	5.0	
Hydroxide Alkalinity as CaCO3	**	"	**	"	**	ND "	5.0	
Total Alkalinity as CaCO3	"	"	"	**	"	830 "	5.0	
Total Organic Carbon	EPA 415.1	AC62710	03/27/06	03/29/06	4	38.0 "	4.00	
Anions by EPA Method 300.0								
Chloride	EPA 300.0	AC62412	03/24/06	03/24/06	50	330 mg/l	25	
Nitrate as N	*	**	"	03/24/06	1	ND "	0.20	
Sulfate as SO4	"	"	"	"	"	0.99 "	0.50	
MW-2-200603 (A603726-02)			Sample Ty	pe: Water		Sampled: 03/23/06 14:11		
Metals by EPA 200 Series Methods						- mpied: 00/20/00 14:11		
Calcium	EPA 200.7	AC62708	03/27/06	03/30/06	1	77 mg/l	1.0	
Magnesium	"	"	"	"	"	39 "	1.0	
Conventional Chemistry Parameters by	у АРНА/ЕРА М	1ethods						
Bicarbonate Alkalinity as CaCO3	SM2320B	AC62503	03/25/06	03/25/06	1	480 mg/l	5.0	
Carbonate Alkalinity as CaCO3	"	"	"	"	,	ND "	5.0	
Hydroxide Alkalinity as CaCO3	**	"	•	"	•	ND "	5.0	
Total Alkalinity as CaCO3	"	"	,,	"	**	480 "	5.0 5.0	
Total Organic Carbon	EPA 415.1	AC62710	03/27/06	03/29/06	2	31.7 "	2.00	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 04/03/06 09:13

Project No: 9329 Task 23 Project ID: SPI - (GeoMatrix)

14 "

Order Number

Magnesium

Receipt Date/Time

Client Code

Client PO/Reference

A603726

03/24/2006 16:20

GEOMAT

Alpha Analytical Laboratories, Inc. **METHOD** BATCH PREPARED ANALYZED DILUTION **RESULT PQL** NOTE MW-2-200603 (A603726-02) Sample Type: Water Sampled: 03/23/06 14:11 Anions by EPA Method 300.0 Chloride EPA 300.0 AC62412 03/24/06 03/24/06 20 100 mg/l 10 Nitrate as N 03/24/06 l ND" 0.20 Sulfate as SO4 ND" 0.50 MW-3-200603 (A603726-03) Sample Type: Water Sampled: 03/23/06 15:05 Metals by EPA 200 Series Methods Calcium EPA 200.7 AC62708 03/27/06 03/30/06 24 mg/l 1.0 Magnesium 18 " 1.0 Conventional Chemistry Parameters by APHA/EPA Methods Bicarbonate Alkalinity as CaCO3 SM2320B AC62503 03/25/06 03/25/06 210 mg/l 5.0 Carbonate Alkalinity as CaCO3 ND" 5.0 Hydroxide Alkalinity as CaCO3 ND" 5.0 Total Alkalinity as CaCO3 210 " 5.0 **Total Organic Carbon** EPA 415.1 AC62710 03/27/06 03/29/06 12.3 " 1.00 Anions by EPA Method 300.0 Chloride EPA 300.0 AC62412 03/24/06 03/24/06 5 25 mg/l 2.5 Nitrate as N 03/24/06 1 ND" 0.20 Sulfate as SO4 2.2 " 0.50 MW-5-200603 (A603726-04) Sample Type: Water Sampled: 03/24/06 08:04 Metals by EPA 200 Series Methods Calcium EPA 200.7 AC62708 03/27/06 03/30/06 1 9.3 mg/l 1.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

4/3/2006

1.0

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 04/03/06 09:13

Project No: 9329 Task 23

Project ID: SPI - (GeoMatrix)

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603726

03/24/2006 16:20

GEOMAT

n - n	thods AC62503	PREPARED Sample Typ 03/25/06	03/25/06	DILUTION	RESULT Sampled: 03/24/06 08:04	PQL	NOTE
12320B " "	AC62503	03/25/06	03/25/06		Sampled: 03/24/06 08:04		
12320B " "	AC62503				,		
H "	11			1			
"	•	"			71 mg/l	5.0	
*			**	"	ND "	5.0	
		"	"	"	ND "	5.0	
		"	н	"	71 "	5.0	
A 415.1	AC62710	03/27/06	03/28/06	**	5.54 "	1.00	
A 300.0	AC62412	03/24/06	03/24/06	1	8.6 mg/l	0.50	
"	"	"	"	,	e		
*	"	"	. "	"	ND "	0.50	
	5	Sample Tvr	e: Water		Sampled: 03/24/06 12:20		
					54mpred: 05/24/00 12.20		
A 200.7	AC62708	03/27/06	03/30/06	1	4.3 mg/l	1.0	
	"	"	"	,	C.		
					2.2	1.0	
A/EPA Met	hods						
		03/25/06	03/25/06	1	15 mg/l	5.0	
"	"	"	"	"	· ·		
"	"	"	"	"			
"	"		"	11			
	AC62710				13	5.0	
	A 200.7 " A/EPA Met 2320B " "	A 200.7 AC62708 A/EPA Methods 2320B AC62503	Sample Typ A 200.7 AC62708 03/27/06 " " " A/EPA Methods 2320B AC62503 03/25/06 " " " "	Sample Type: Water A 200.7	Sample Type: Water A 200.7 AC62708 03/27/06 03/30/06 1 " " " " " " " A/EPA Methods 2320B AC62503 03/25/06 03/25/06 1 " " " " " " " " " " " " " " " " " "	Sample Type: Water Sampled: 03/24/06 12:20 A 200.7 AC62708 03/27/06 03/30/06 1 4.3 mg/l 2.2 " A/EPA Methods 2320B AC62503 03/25/06 03/25/06 1 15 mg/l ND " ND	ND 0.20 ND 0.50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 5 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 04/03/06 09:13

Project No: 9329 Task 23

Project ID: SPI - (GeoMatrix)

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603726

03/24/2006 16:20

GEOMAT

Alpha Analytical Laboratories, Inc. **METHOD** BATCH PREPARED ANALYZED DILUTION **RESULT** PQL NOTE MW-7-200603 (A603726-05) Sample Type: Water Sampled: 03/24/06 12:20 Anions by EPA Method 300.0 Chloride EPA 300.0 AC62412 03/24/06 03/24/06 5 2.5 21 mg/l Nitrate as N 03/24/06 1 ND" 0.20 Sulfate as SO4 4.0 " 0.50 MW-14-200603 (A603726-06) Sample Type: Water Sampled: 03/23/06 11:24 Metals by EPA 200 Series Methods Calcium EPA 200.7 03/27/06 AC62708 03/30/06 29 mg/l 1.0 Magnesium 56 " 1.0 Conventional Chemistry Parameters by APHA/EPA Methods Bicarbonate Alkalinity as CaCO3 SM2320B AC62503 03/25/06 03/25/06 1000 mg/l5.0 Carbonate Alkalinity as CaCO3 ND " 5.0 Hydroxide Alkalinity as CaCO3 ND" 5.0 Total Alkalinity as CaCO3 1000 " 5.0 Total Organic Carbon EPA 415.1 AC62710 03/27/06 03/29/06 71.3 " 8.00 Anions by EPA Method 300.0 Chloride EPA 300.0 AC62412 03/24/06 03/24/06 50 410 mg/l 25 Nitrate as N 03/24/06 1 ND " 0.20 Sulfate as SO4 03/24/06 ND" 0.50 MW-20-200603 (A603726-07) Sample Type: Water Sampled: 03/24/06 09:26 Metals by EPA 200 Series Methods Calcium EPA 200.7 AC62708 03/27/06 03/30/06 27 mg/l 1 1.0 Magnesium 15 " 1.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 04/03/06 09:13

Project No: 9329 Task 23

Project ID: SPI - (GeoMatrix)

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603726

03/24/2006 16:20

GEOMAT

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTI
MW-20-200603 (A603726-07)			Sample Ty	pe: Water	S	ampled: 03/24/06 09:26		
Conventional Chemistry Parameters by	y APHA/EPA N					•		
Bicarbonate Alkalinity as CaCO3	SM2320B	AC62503	03/25/06	03/25/06	1 .	140 mg/l	5.0	
Carbonate Alkalinity as CaCO3	**	n	"	"	**	ND "	5.0	
Hydroxide Alkalinity as CaCO3	**	11	"	"	"	ND "	5.0	
Total Alkalinity as CaCO3	"	"	"	•	"	140 "	5.0	
Total Organic Carbon	EPA 415.1	AC62710	03/27/06	03/29/06	"	5.11 "	1.00	
Anions by EPA Method 300.0								
·Chloride	EPA 300.0	AC62412	03/24/06	03/24/06	1	8.6 mg/l	0.50	
Nitrate as N	"	"	"	H	"	ND "	0.20	
Sulfate as SO4	n	**		*	*	2.6 "	0.50	
TW-21-200603 (A603726-08)			Sample Ty	ne: Water	S	ampled: 03/24/06 10:52		
Metals by EPA 200 Series Methods					-	pred: 00/24/00 10:02		
Calcium	EPA 200.7	AC62708	03/27/06	03/30/06	1	28 mg/l	1.0	
Magnesium	**	**	11	"	"	47 "	1.0	
Conventional Chemistry Parameters by	y APHA/EPA N	1ethods						
Bicarbonate Alkalinity as CaCO3	SM2320B	AC62503	03/25/06	03/25/06	1	360 mg/l	5.0	
Carbonate Alkalinity as CaCO3	**	"	**	"	"	ND "	5.0	
Hydroxide Alkalinity as CaCO3	"	"	**	"	"	ND "	5.0	
Total Alkalinity as CaCO3	"	"		"	"	360 "	5.0	
Total Organic Carbon	EPA 415.1	AC62710	03/27/06	03/29/06	•	17.7 "	1.00	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612

Report Date: 04/03/06 09:13

Project ID: SPI - (GeoMatrix)

Project No: 9329 Task 23

Attn: Mike Keim

Client PO/Reference

Order Number A603726

Receipt Date/Time 03/24/2006 16:20 Client Code

GEOMAT

		Alpha A	nalytical	Laborato	ries, Inc.		Alpha Analytical Laboratories, Inc.								
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE							
MW-21-200603 (A603726-08)			Sample Ty	pe: Water		Sampled: 03/24/06 10:52									
Anions by EPA Method 300.0															
Chloride	EPA 300.0	AC62412	03/24/06	03/24/06	10	84 mg/l	5.0								
Nitrate as N	"	"	,,	03/24/06	1	ND "	0.20								
Sulfate as SO4	н	"	"	**	"	ND "	0.50								
MW-A-200603 (A603726-09)			Sample Ty	pe: Water		Sampled: 03/24/06 00:00									
Metals by EPA 200 Series Methods				•		•									
Calcium	EPA 200.7	AC62708	03/27/06	03/30/06	1	27 mg/l	1.0								
Magnesium	"	11	"		**	47 ''	1.0								
Conventional Chemistry Parameters b	y APHA/EPA N	1ethods													
Bicarbonate Alkalinity as CaCO3	SM2320B	AC62503	03/25/06	03/25/06	1	360 mg/l	5.0								
Carbonate Alkalinity as CaCO3	n	"	"	**	•	ND "	5.0								
Hydroxide Alkalinity as CaCO3	"	**	"	**	"	ND "	5.0								
Total Alkalinity as CaCO3	"	"	"	"	"	360 "	5.0								
Total Organic Carbon	EPA 415.1	AC62710	03/27/06	03/29/06	"	18.1 "	1.00								
Anions by EPA Method 300.0															
Chloride	EPA 300.0	AC62412	03/24/06	03/24/06	10	84 mg/l	5.0								
Nitrate as N	"	"	"	03/25/06	1	ND "	0.20								
Sulfate as SO4	**	**	"	**	**	ND "	0.50								

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 8 of 11

Geomatrix Consultants 2101 Webster Street, 12th Floor

Oakland, CA 94612

Report Date: 04/03/06 09:13

Project ID: SPI - (GeoMatrix)

Project No: 9329 Task 23

Attn: Mike Keim

Client Code

Order Number A603726

Receipt Date/Time 03/24/2006 16:20

GEOMAT

Client PO/Reference

Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AC62708 - EPA 3005A										
Blank (AC62708-BLK1)				Prepared:	03/27/06	Analyzed	1: 03/30/06			
Calcium	ND	1.0	mg/l	•						
Magnesium	ND	1.0	"							
LCS (AC62708-BS1)				Prepared:	03/27/06	Analyzed	l: 03/30/06			
Calcium	10.1	1.0	mg/l	10.0		101	85-115			
Magnesium	9.98	1.0	"	10.0		99.8	85-115			
LCS Dup (AC62708-BSD1)				Prepared:	03/27/06	Analyzed	: 03/30/06			
Calcium	10.3	1.0	mg/l	10.0		103	85-115	1.96	20	
Magnesium	10.2	1.0	"	10.0		102	85-115	2.18	20	
Duplicate (AC62708-DUP1)	Sou	rce: A603	726-01	Prepared:	03/27/06	Analyzed	: 03/30/06			
Calcium	38.8	1.0	mg/l	•	40			3.05	20	
Magnesium	62.4	1.0	"		64			2.53	20	
Matrix Spike (AC62708-MS1)	Sou	rce: A603	726-01	Prepared:	03/27/06	Analyzed	: 03/30/06			
Calcium	48.8	1.0	mg/l	10.0	40	88.0	70-130			
Magnesium	73.9	1.0	"	10.0	64	99.0	70-130			
Matrix Spike Dup (AC62708-MSD1)	Sou	rce: A603	726-01	Prepared:	03/27/06	Analyzed	: 03/30/06			
Calcium	51.8	1.0	mg/l	10.0	40	118	70-130	5.96	20	
Magnesium	75.7	1.0	"	10.0	64	117	70-130	2.41	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 04/03/06 09:13

Project ID: SPI - (GeoMatrix)

Project No: 9329 Task 23

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603726

03/24/2006 16:20

GEOMAT

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AC62503 - General Preparation										
Duplicate (AC62503-DUP1)	Sou	rce: A603	726-07	Prepared of	& Analyze	ed: 03/25/0	06			
Total Alkalinity as CaCO3	145	5.0	mg/l		140			3.51	20	
Bicarbonate Alkalinity as CaCO3	145	5.0	n		140			3.51	20	
Carbonate Alkalinity as CaCO3	ND	5.0	"		ND				20	
Hydroxide Alkalinity as CaCO3	ND	5.0	"		ND				20	
Batch AC62710 - General Prep										
Blank (AC62710-BLK1)				Prepared:	03/27/06	Analyzed	1: 03/28/06			
Total Organic Carbon	ND	1.00	mg/l							
LCS (AC62710-BS1)				Prepared:	03/27/06	Analyzed	1: 03/28/06			
Total Organic Carbon	9.98	1.00	mg/l	10.0		99.8	85-115			
LCS Dup (AC62710-BSD1)				Prepared:	03/27/06	Analyzed	1: 03/28/06			
Total Organic Carbon	9.95	1.00	mg/l	10.0		99.5	85-115	0.301	20	
Duplicate (AC62710-DUP1)	Sou	rce: A603	719-01	Prepared:	03/27/06	Analyzed	1: 03/28/06			
Total Organic Carbon	1.09	1.00	mg/l	•	1.13			3.60	20	
Matrix Spike (AC62710-MS1)	Sou	rce: A603	719-02	Prepared:	03/27/06	Analyzed	1: 03/28/06			
Total Organic Carbon	21.1	2.00	mg/l	20.0	ND	100	70-130			
Matrix Spike Dup (AC62710-MSD1)	Sou	rce: A603	719-02	Prepared:	03/27/06	Analyzed	1: 03/28/06			
Total Organic Carbon	21.4	2.00	mg/l	20.0	ND	102	70-130	1.41	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 10 of 11

Geomatrix Consultants 2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 04/03/06 09:13

Project No: 9329 Task 23

Project ID: SPI - (GeoMatrix)

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603726

03/24/2006 16:20

GEOMAT

Anions by EPA Method 300.0 - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AC62412 - General Preparation	1									
Blank (AC62412-BLK1)				Prepared	& Analyze	ed: 03/24/0	06			
Nitrate as N	ND	0.20	mg/l							
Sulfate as SO4	ND	0.50	"							
Chloride	ND	0.50	"							
LCS (AC62412-BS1)				Prepared	& Analyze	ed: 03/24/0	06			
Sulfate as SO4	8.58	0.50	mg/l	8.00		107	90-110			
Chloride	3.05	0.50	"	3.00		102	90-110			
Nitrate as N	1.0	0.20	"	1.00		100	90-110			
LCS Dup (AC62412-BSD1)				Prepared	& Analyze	ed: 03/24/0	06			
Nitrate as N	1.0	0.20	mg/l	1.00		100	90-110	0.00	20	
Chloride	3.06	0.50	"	3.00		102	90-110	0.327	20	
Sulfate as SO4	8.56	0.50	n	8.00		107	90-110	0.233	10	
Duplicate (AC62412-DUP1)	Sou	rce: A603	726-04	Prepared	& Analyze	d: 03/24/0	06			
Sulfate as SO4	ND	1.0	mg/l	***************************************	ND				20	
Nitrate as N	ND	0.40	"		ND				20	
Chloride	8.92	1.0	"		8.6			3.65	20	
Matrix Spike (AC62412-MS1)	Sou	rce: A603	726-04	Prepared	& Analyze	d: 03/24/()6			
Sulfate as SO4	20.8	1.0	mg/l	20.0	ND	104	80-120			
Chloride	13.5	1.0	"	5.00	8.6	98.0	80-120			
Nitrate as N	5.1	0.40	"	5.00	ND	102	80-120			
Matrix Spike Dup (AC62412-MSD1)	Source: A603726-04			Prepared & Analyzed: 03/24/06						
Nitrate as N	5.2	0.40	mg/l	5.00	ND	104	80-120	1.94	20	
Sulfate as SO4	20.8	1.0	**	20.0	ND	104	80-120	0.00	10	
Chloride	13.5	1.0	**	5.00	8.6	98.0	80-120	0.00	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> Bruce Gove Laboratory Director

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone (707) 468-0401 • Fax (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 11 of 11

Geomatrix Consultants

2101 Webster Street, 12th Floor

Oakland, CA 94612 Attn: Mike Keim

Report Date: 04/03/06 09:13

Project No: 9329 Task 23

Project ID: SPI - (GeoMatrix)

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A603726

03/24/2006 16:20

GEOMAT

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

PQL Practical Quantitation Limit

ANALYTICAL REPORT

Job Number: 720-2842-1

Job Description: Metals - A603726

For: Alpha Analytical, Inc. 208 Mason St. Ukiah, CA 95482

Attention: Sheri Speaks

Dimple Sharma

Project Manager I dsharma@stl-inc.com 04/05/2006

Project Manager: Dimple Sharma

METHOD SUMMARY

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Description		Lab Location	Method	Preparation Method
Matrix:	Water			
Inductively	Coupled Plasma - Atomic Emission Spectrometry	STL-SF	SW846 60108	3
	Acid Digestion of Waters for Total Recoverable or Sample Filtration performed in the Field	STL-SF STL-SF		SW846 3005A FIELD_FLTRD

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

	au .a		Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-2842-1	MW-1-200603	Water	03/23/2006 1225	03/28/2006 0920
720-2842-2	MW-2-200603	Water	03/23/2006 1411	03/28/2006 0920
720-2842-3	MW-3-200603	Water	03/23/2006 1505	03/28/2006 0920
720-2842-4	MW-5-200603	Water	03/24/2006 0804	03/28/2006 0920
720-2842-5	MW-7-200603	Water	03/24/2006 1220	03/28/2006 0920
720-2842-6	MW-14-200603	Water	03/24/2006 1124	03/28/2006 0920
720-2842-7	MW-20-200603	Water	03/24/2006 0926	03/28/2006 0920
720-2842-8	MW-21-200603	Water	03/24/2006 1052	03/28/2006 0920
720-2842-9	MW-A-200603	Water	03/24/2006 0000	03/28/2006 0920

Client: Alpha Analytical, Inc. Job Number: 720-2842-1

Client Sample ID: MW-1-200603

Lab Sample ID: 720-2842-1 Date Sampled: 03/23/2006 1225 Client Matrix: Date Received: 03/28/2006 0920 Water

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Analysis Batch: 720-7174 Varian ICP Method: 6010B Instrument ID: Preparation: 3005A Prep Batch: 720-7068 Lab File ID: N/A

Initial Weight/Volume: Dilution: 40 mL 1.0 03/30/2006 1428 Final Weight/Volume: 42.8 mL Date Analyzed:

Date Prepared: 03/28/2006 1321

Analyte Result (mg/L) Qualifier RL 61 0.20 Iron 4.3 0.0050 Manganese

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Client Sample ID: MW-2-200603

Lab Sample ID: Client Matrix:

720-2842-2

Water

Date Sampled:

03/23/2006 1411

Date Received:

03/28/2006 0920

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Method:

6010B

Analysis Batch: 720-7174

Instrument ID:

Varian ICP

Preparation:

3005A

Prep Batch: 720-7068

Lab File ID:

Dilution:

1.0

N/A

Initial Weight/Volume:

40 mL

Date Analyzed: Date Prepared:

03/30/2006 1432 03/28/2006 1321 Final Weight/Volume:

42.8 mL

Analyte

Resuit (mg/L)

Qualifier

RL

Iron Manganese 58 5.2

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Client Sample ID: MW-3-200603

Lab Sample ID: Client Matrix:

720-2842-3

Water

Date Sampled:

03/23/2006 1505

Date Received:

03/28/2006 0920

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Method:

6010B

Analysis Batch: 720-7174

Instrument ID:

Varian ICP

Preparation:

3005A

Prep Batch: 720-7068

Dilution:

1.0

Lab File ID:

N/A

Initial Weight/Volume: Final Weight/Volume:

40 mL 42.8 mL

Date Analyzed: Date Prepared:

03/30/2006 1436 03/28/2006 1321

Analyte	Result (mg/L)	Qualifier	RL
Iron	25		0.20
Manganese	1.9		0.0050

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Client Sample ID:

MW-5-200603

Lab Sample ID:

720-2842-4

Client Matrix:

Water

Date Sampled:

03/24/2006 0804

Date Received:

03/28/2006 0920

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Method:

6010B

3005A

Analysis Batch: 720-7174

Instrument ID:

Varian ICP

Preparation:

Prep Batch: 720-7068

Dilution:

1.0

Lab File ID:

N/A

Date Analyzed:

Initial Weight/Volume: Final Weight/Volume:

40 mL 42.8 mL

Date Prepared:

03/30/2006 1440 03/28/2006 1321

Analyte

Result (mg/L)

Qualifier

RL

Iron Manganese 2.2 0.29

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

MW-7-200603 Client Sample ID:

Lab Sample ID:

720-2842-5

Client Matrix:

Water

Date Sampled:

03/24/2006 1220

Date Received:

03/28/2006 0920

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Method:

6010B

Analysis Batch: 720-7276

Instrument ID:

Varian ICP

Preparation:

3005A

Prep Batch: 720-7232

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

40 mL 42.8 mL

Date Analyzed: Date Prepared:

04/04/2006 1447 04/03/2006 1349

Result (mg/L) Qualifier RL Analyte 0.91 Iron 0.20 0.23 0.0050 Manganese

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Client Sample ID: MW-14-200603

Lab Sample ID: Client Matrix:

720-2842-6

Water

Date Sampled:

03/23/2006 1124

Date Received:

03/28/2006 0920

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Method: Preparation:

Dilution:

6010B

3005A

10

Analysis Batch: 720-7276

Prep Batch: 720-7232

Instrument ID:

Varian ICP

Lab File ID:

N/A

Initial Weight/Volume: Final Weight/Volume:

40 mL 42.8 mL

Date Analyzed: Date Prepared: 04/04/2006 1450

04/03/2006 1349

Result (mg/L)

Qualifier

RL

Iron Manganese

Analyte

38 0.98 2.0 0.050

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Client Sample ID: MW-20-200603

Lab Sample ID:

720-2842-7

Client Matrix:

Water

Date Sampled:

03/24/2006 0926

Date Received:

03/28/2006 0920

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Method:

6010B

3005A

Analysis Batch: 720-7276

Instrument ID:

Varian ICP

Preparation:

Prep Batch: 720-7232

Lab File ID:

N/A

Dilution:

1.0

04/04/2006 1454

Initial Weight/Volume:

40 mL

Date Analyzed: Date Prepared:

04/03/2006 1349

Final Weight/Volume:

42.8 mL

Analyte

Result (mg/L)

Qualifier

RL

Iron Manganese 0.62 0.92

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Client Sample ID: MW-21-200603

Lab Sample ID: Client Matrix:

720-2842-8

Water

Date Sampled:

03/24/2006 1052

Date Received:

03/28/2006 0920

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Method:

6010B

Analysis Batch: 720-7276

Instrument ID:

Varian ICP

Preparation:

3005A

Prep Batch: 720-7232

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume:

40 mL

Date Analyzed: Date Prepared:

04/04/2006 1458 04/03/2006 1349 Final Weight/Volume:

42.8 mL

Analyte	
	_

Qualifier

RL

Iron Manganese

70 2.7

Result (mg/L)

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Client Sample ID: MW-A-200603

Lab Sample ID: Client Matrix:

720-2842-9

Water

Date Sampled:

03/24/2006 0000

Date Received:

03/28/2006 0920

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Dissolved

Method:

6010B

Analysis Batch: 720-7276

Instrument ID:

Varian ICP

Preparation:

3005A

Lab File ID:

Dilution:

1.0

Prep Batch: 720-7232

Initial Weight/Volume:

N/A

Date Analyzed: Date Prepared:

04/04/2006 1501 04/03/2006 1349 Final Weight/Volume:

40 mL 42.8 mL

Analyte

Result (mg/L)

Qualifier

RL

Iron Manganese 70 2.7

DATA REPORTING QUALIFIERS

Lab Section Qualifier

Description

Quality Control Results

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
Metals				
Prep Batch: 720-7068				And the second s
LCS 720-7043/2-B	Lab Control Spike	Water	3005A	
LCSD 720-7043/3-B	Lab Control Spike Duplicate	Water	3005A	
MB 720-7043/1-B	Method Blank	Water	3005A	
720-2842-1	MVV-1-200603	Water	3005A	
720-2842-2	MW-2-200603	Water	3005A	
720-2842-3	MW-3-200603	Water	3005A	
720-2842-4	MW-5-200603	Water	3005A	
Prep Batch: 720-7232				
LCS 720-7131/2-B	Lab Control Spike	Water	3005A	
LCSD 720-7131/3-B	Lab Control Spike Duplicate	Water	3005A	
MB 720-7131/1-B	Method Blank	Water	3005A	
720-2842-5	MW-7-200603	Water	3005A	
720-2842-6	MW-14-200603	Water	3005A	
720-2842-7	MW-20-200603	Water	3005A	
720-2842-8	MW-21-200603	Water	3005A	
720-2842-9	MW-A-200603	Water	3005A	
Analysis Batch:720-7	174			
LCS 720-7043/2-B	Lab Control Spike	Water	6010B	720-7068
LCSD 720-7043/3-B	Lab Control Spike Duplicate	Water	6010B	720-7068
MB 720-7043/1-B	Method Blank	Water	6010B	720-7068
720-2842-1	MVV-1-200603	Water	6010B	720-7068
720-2842-2	MW-2-200603	Water	6010B	720-7068
720-2842-3	MVV-3-200603	Water	6010B	720-7068
720-2842-4	MW-5-200603	Water	6010B	720-7068
Analysis Batch:720-7	276			
LCS 720-7131/2-B	Lab Control Spike	Water	6010B	720-7232
LCSD 720-7131/3-B	Lab Control Spike Duplicate	Water	6010B	720-7232
MB 720-7131/1-B	Method Blank	Water	6010B	720-7232
720-2842-5	MW-7-200603	Water	6010B	720-7232
720-2842-6	MW-14-200603	Water	6010B	720-7232
720-2842-7	MW-20-200603	Water	6010B	720-7232
720-2842-8	MW-21-200603	Water	6010B	720-7232
720-2842-9	MW-A-200603	Water	6010B	720-7232

Quality Control Results

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Method Blank - Batch: 720-7068

Method: 6010B Preparation: 3005A

Dissolved

Lab Sample ID: MB 720-7043/1-B

Client Matrix: Water

Dilution:

1.0

Date Analyzed: 03/30/2006 1257 Date Prepared: 03/28/2006 1321 Analysis Batch: 720-7174 Prep Batch: 720-7068

Units: mg/L

Instrument ID: Varian ICP Lab File ID: N/A

Initial Weight/Volume: 40 mL Final Weight/Volume: 42.8 mL

Analyte	Result	Qual	RL
Iron	ND		0.20
Manganese	ND		0.0050

Laboratory Control/

Laboratory Control Duplicate Recovery Report - Batch: 720-7068

Method: 6010B Preparation: 3005A

Dissolved

LCS Lab Sample ID: LCS 720-7043/2-B

Client Matrix:

Water

Dilution:

Date Analyzed: Date Prepared: 1.0

03/30/2006 1300 03/28/2006 1321

Analysis Batch: 720-7174 Prep Batch: 720-7068

Units: mg/L

Instrument ID: Varian ICP Lab File ID: N/A

Initial Weight/Volume: 40 mL

Final Weight/Volume: 42.8 mL

LCSD Lab Sample ID: LCSD 720-7043/3-B

Client Matrix:

Water

Dilution:

1.0

Date Analyzed: Date Prepared:

03/30/2006 1304

03/28/2006 1321

Analysis Batch: 720-7174 Prep Batch: 720-7068

Units: mg/L

Instrument ID: Varian ICP

Lab File ID: N/A

Initial Weight/Volume: 40 mL Final Weight/Volume: 42.8 mL

	<u>%</u>	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Iron	104	102	80 - 120	2	20		
Manganese	105	103	80 - 120	3	20		

Quality Control Results

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Method Blank - Batch: 720-7232

Method: 6010B Preparation: 3005A

Dissolved

Lab Sample ID: MB 720-7131/1-B

Client Matrix: Water

Dilution:

1.0

Date Analyzed: 04/04/2006 1332 Date Prepared: 04/03/2006 1349 Analysis Batch: 720-7276 Prep Batch: 720-7232

Units: mg/L

Instrument ID: Varian ICP

Lab File ID: N/A

Initial Weight/Volume: 40 mL Final Weight/Volume: 42.8 mL

Analyte	Result	Qual	RL
Iron	ND		0.20
Manganese	ND		0.0050

Laboratory Control/

Laboratory Control Duplicate Recovery Report - Batch: 720-7232

Method: 6010B Preparation: 3005A

Dissolved

LCS Lab Sample ID: LCS 720-7131/2-B

Client Matrix:

Water

Dilution:

Date Analyzed:

Date Prepared:

1.0

04/04/2006 1335 04/03/2006 1349 Analysis Batch: 720-7276 Prep Batch: 720-7232

Units: mg/L

Instrument ID: Varian ICP

Lab File ID: N/A

Initial Weight/Volume: Final Weight/Volume:

40 mL 42.8 mL

LCSD Lab Sample ID: LCSD 720-7131/3-B

Client Matrix:

Water

Dilution:

1.0

Date Analyzed:

04/04/2006 1339

Date Prepared:

04/03/2006 1349

Analysis Batch: 720-7276

Prep Batch: 720-7232

Units: mg/L

Instrument ID: Varian ICP

Lab File ID: N/A

ab File ID: N/A

Initial Weight/Volume: 40 mL Final Weight/Volume: 42.8 mL

% Rec. Analyte LCS **LCSD RPD** Limit RPD Limit LCS Qual LCSD Qual Iron 106 101 80 - 120 20 Manganese 106 102 80 - 120 20 4

720-2842 SUBCONTRACT ORDER Alpha Analytical Laboratories, Inc.

A603726

40120

SENDING LABO	DRATORY:
--------------	-----------------

Alpha Analytical Laboratories, Inc.

208 Mason St. Ukiah, CA 95482

Released By

Phone: (707)468-0401 Fax: (707)468-5267

Project Manager: Sheri L. Speaks **RECEIVING LABORATORY:**

Severn Trent Labs - SF 1220 Quarry Ln. Pleasanton, CA 94566

Phone: (925) 484-1919

Fax: -

Terms: Net 30

7/06 12:00 [ater] Sample 7/06 12:00	d 03/23/06 12:25 Paci 09/19/06 12:25 d 03/23/06 14:11 Paci 09/19/06 14:11 d 03/23/06 15:05 Paci	fic		
fater] Sample 7/06 12:00 fater] Sample	d 03/23/06 14:11 Paci 09/19/06 14:11 d 03/23/06 15:05 Paci			
7/06 12:00 [ater] Sample	09/19/06 14:11 d 03/23/06 15:05 Paci			
7/06 12:00 [ater] Sample	09/19/06 14:11 d 03/23/06 15:05 Paci			
ater Sample	d 03/23/06 15:05 Paci	fic		
		fic		
		fic		
7/06 12:00	09/19/06 15:05			
ater Sample	d 03/24/06 08:04 Paci	fic		-1
7/06 12:00	09/20/06 08:04			***
ater] Sample	d 03/24/06 12:20 Paci	fic		W
7/06 12:00	09/20/06 12:20			
Water] Sampl	led 03/24/06 11:24 Pa	cific		
7/06 12:00	09/20/06 11:24			
	7/06 12:00 ater Sample 7/06 12:00 Vater Sample	7/06 12:00 09/20/06 08:04 ater] Sampled 03/24/06 12:20 Paci 7/06 12:00 09/20/06 12:20 Water] Sampled 03/24/06 11:24 Pa	7/06 12:00 09/20/06 08:04 ater] Sampled 03/24/06 12:20 Pacific 7/06 12:00 09/20/06 12:20 Water] Sampled 03/24/06 11:24 Pacific	7/06 12:00 09/20/06 08:04 ater] Sampled 03/24/06 12:20 Pacific 7/06 12:00 09/20/06 12:20 Water] Sampled 03/24/06 11:24 Pacific

Date

Received By

100-2842 Analusia

SUBCONTRACT ORDER

Alpha Analytical Laboratories, Inc.

A603726

Analysis	Due	Expires	Comme	ents
A603726-07 MW-20-2	00603 [Water] Sam	pled 03/24/06 09:26 P	acific	
Fe+2/Mn+2 SUB	04/07/06 12:00	09/20/06 09:26		
Containers Supplied:				
A603726-08 MW-21-2	00603 [Water] Sam	pled 03/24/06 10:52 P	acific	
Fe+2/Mn+2 SUB	04/07/06 12:00	09/20/06 10:52		
Containers Supplied:				
A603726-09 MW-A-20	0603 [Water] Samp	oled 03/24/06 00:00 Pa	ecific	
Fe+2/Mn+2 SUB	04/07/06 12:00	09/20/06 00:00		
Containers Supplied:				
Report to State				
System Name:		Employed by:		
User ID:	4.00	Sampler:		
System Number:	· · ·			
Part 1	o Ein	. = G		ř
	(S.speaks (6	Alpha-Labs	1. Cem
Released By	Date	21Ch	D	
Released By	Date		leceived By	Date Date
			Joan M. () Co.	3-28-C6 0920

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Alpha Analytical, Inc.

Job Number: 720-2842-1

Login Number: 2842

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the	True	
COC. Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

K PRIME PROJECT: 9984 CLIENT PROJECT: A603726

BATCH ID: SAMPLE TYPE: DATE SAMPLED: TIME SAMPLED:

SAMPLE ID:

LAB NO:

040506W01 WATER 03/23/06

MW-1-200603

54677

12:25

DATE RECEIVED:

03/27/06

METHOD:

DISSOLVED GASES

DATE ANALYZED:

04/05/06

REFFERENCE:

RSK175

UNITS:

μg/L

REPORTING SAMPLE CAS NO. **COMPOUND NAME** CONC LIMIT 2440 METHANE 74-82-8 1.58

APPROVED BY:

DATE:

K PRIME, INC. SAMPLE ID: MW-2-200603 LAB NO: 54678 LABORATORY REPORT 040506W01 BATCH ID: WATER SAMPLE TYPE: K PRIME PROJECT: 9984 03/23/06 DATE SAMPLED: CLIENT PROJECT: A603726 TIME SAMPLED: 14:11 03/27/06 DATE RECEIVED: 04/05/06 DATE ANALYZED: **DISSOLVED GASES** METHOD:

REFFERENCE:

RSK175

 COMPOUND NAME
 CAS NO.
 REPORTING LIMIT
 SAMPLE CONC

 METHANE
 74-82-8
 1.58
 1980

APPROVED BY:
DATE: 4/2/04

UNITS:

μg/L

SAMPLE ID: MW-3-200603 LAB NO: 54679

BATCH ID:

040506W01

K PRIME PROJECT: 9984 CLIENT PROJECT: A603726

SAMPLE TYPE: DATE SAMPLED: WATER 03/23/06

TIME SAMPLED: DATE RECEIVED:

15:05 03/27/06

METHOD:

DISSOLVED GASES

DATE ANALYZED:

04/05/06

REFFERENCE:

RSK175

UNITS:

μg/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
METHANE	74-82-8	1.58	2840

APPROVED BY: __ DATE: ___

SAMPLE ID: MW-5-200603 LAB NO: BATCH ID:

54680

040506W01

K PRIME PROJECT: 9984 CLIENT PROJECT: A603726

SAMPLE TYPE:

WATER

DATE SAMPLED: TIME SAMPLED:

03/24/06

DATE RECEIVED:

8:04 03/27/06

METHOD:

DISSOLVED GASES

DATE ANALYZED:

04/05/06

REFFERENCE:

RSK175

UNITS:

μg/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
METHANE	74-82-8	1.58	932

APPROVED BY: _

SAMPLE ID: MW-7-200603 LAB NO:

BATCH ID:

54681 040506W01

K PRIME PROJECT: 9984 CLIENT PROJECT: A603726

SAMPLE TYPE:

WATER

DATE SAMPLED: TIME SAMPLED:

03/24/06

DATE RECEIVED:

12:20 03/27/06

METHOD:

DISSOLVED GASES

DATE ANALYZED:

04/05/06

REFFERENCE:

RSK175

UNITS:

μg/L

COMPOUND NAME

CAS NO.

REPORTING

SAMPLE

METHANE

74-82-8

LIMIT 1.58

CONC 1370

APPROVED BY: DATE: K PRIME, INC.

LABORATORY REPORT

SAMPLE ID: MW-14-200603

LAB NO: BATCH ID:

54682 040506W01

K PRIME PROJECT: 9984

SAMPLE TYPE:

WATER 03/27/06

CLIENT PROJECT: A603726

DATE SAMPLED:

TIME SAMPLED:

11:24

DATE RECEIVED: DATE ANALYZED: 03/27/06 04/05/06

METHOD: REFFERENCE: DISSOLVED GASES **RSK175**

UNITS:

µg/L

COMPOUND NAME

CAS NO.

REPORTING

SAMPLE

METHANE

74-82-8

LIMIT 1.58

CONC 2640

APPROVED BY: DATE: K PRIME, INC.

LAB NO:

SAMPLE ID: MW-20-200603

LABORATORY REPORT

BATCH ID:

54683

K PRIME PROJECT: 9984 CLIENT PROJECT: A603726

SAMPLE TYPE:

040506W01

DATE SAMPLED:

WATER 03/24/06

TIME SAMPLED: DATE RECEIVED: 9:26

DISSOLVED GASES

DATE ANALYZED:

03/27/06 04/05/06

METHOD: REFFERENCE:

RSK175

UNITS:

µg/L

COMPOUND NAME

CAS NO.

REPORTING

SAMPLE

METHANE

74-82-8

LIMIT 1.58

CONC ND

APPROVED BY: DATE:

LABORATORY REPORT

K PRIME PROJECT: 9984 CLIENT PROJECT: A603726

SAMPLE TYPE: DATE SAMPLED:

TIME SAMPLED: **DATE RECEIVED:**

LAB NO:

UNITS:

BATCH ID:

DISSOLVED GASES **RSK175**

DATE ANALYZED:

03/27/06 04/05/06

54684

040506W01

WATER

03/24/06

10:52

μg/L

SAMPLE ID: MW-21-200603

COMPOUND NAME

METHOD:

REFFERENCE:

REPORTING

CAS NO. **SAMPLE** LIMIT CONC METHANE 74-82-8 1.58 5110

APPROVED BY:

DATE:

LABORATORY REPORT

SAMPLE ID: LAB NO: BATCH ID:

MW-A-200603 54685

K PRIME PROJECT: 9984 CLIENT PROJECT: A603726

SAMPLE TYPE: DATE SAMPLED: 040506W01 WATER

TIME SAMPLED:

03/24/06

DATE RECEIVED:

N/A 03/27/06

METHOD:

DISSOLVED GASES

DATE ANALYZED:

04/05/06

REFFERENCE:

RSK175

UNITS:

µg/L

COMPOUND NAME

CAS NO.

REPORTING

SAMPLE

METHANE

74-82-8

LIMIT 1.58

CONC 5750

APPROVED BY: DATE:

LABORATORY QC REPORT

SAMPLE ID: L040506W01

DUPLICATE ID: D040506W01

BLANK ID: B040506W01 040506W01

METHOD:

DISSOLVED GASSES

BATCH ID: ANALYZED DATE:

04/05/06

REFFERENCE: RSK175

SAMPLE TYPE:

WATER

UNITS:

μg/L

ACCURACY (MATRIX SPIKE)

PARAMETER	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
METHANE	72.9	ND	61.7	85	50-150
ETHENE	128	ND	127	99	50-150
ETHANE	136	ND	122	90	50-150
PROPANE	200	ND	192	96	50-150

PRECISION (SPIKE DUPLICATE)

COMPOUND NAM	REPORTING LIMIT	SPIKE RESULT	DUPLICATE RESULT	RPD (%)	LIMITS (%)
METHANE	1.58	61.7	63.9	3.6	±30
ETHENE	2.38	127	127	0.3	±30
ETHANE	1.63	122	126	3.1	±30
PROPANE	2.21	192	200	3.7	±30

METHOD BLANK

COMPOUND NAM	CAS NO.	REPORTING	METHOD	SAMPLE
		LIMIT	LIMIT	CONC
METHANE	74-82-8	1.58	0.331	ND
ETHENE	74-85-1	2.38	0.547	ND
ETHANE	74-84-0	1.63	0.278	ND
PROPANE	74-84-1	2.21	0.353	ND

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED MDL, NA - NOT APPLICABLE OR AVAILABLE, MRL - METHOD REPORTING LIMIT, MDL - METHOD DETECTION LIMIT.

K PRIME, INC. MW-1-200603 SAMPLE ID: LABORATORY REPORT LAB NO: 54677 **SAMPLE TYPE:** WATER K PRIME PROJECT: 9984 DATE SAMPLED: 03/23/06 **CLIENT PROJECT: A603726** TIME SAMPLED: 12:25 BATCH ID: 040506W01 **METHOD: DISSOLVED GASES DATE ANALYZED:** 4/5/2006 **REFERENCE: RSK 175** UNITS: µg/L **COMPOUND NAME** CAS NO. REPORTING SAMPLE CONC LIMIT CARBON DIOXIDE 124-38-9 165 260000

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, NA - NOT APPLICABLE OR AVAILABLE.

APPROVED BY:

DATE: 4/21/06

K PRIME, INC. SAMPLE ID: MW-2-200603 **LABORATORY REPORT** LAB NO: 54678 **SAMPLE TYPE:** WATER **K PRIME PROJECT: 9984** DATE SAMPLED: 03/23/06 **CLIENT PROJECT: A603726** TIME SAMPLED: 14:11 040506W01 **BATCH ID: METHOD: DISSOLVED GASES** DATE ANALYZED: 4/5/2006 **REFERENCE: RSK 175** UNITS: μg/L **COMPOUND NAME** CAS NO. REPORTING SAMPLE LIMIT CONC CARBON DIOXIDE 124-38-9 165 272000

NOTES:

 \mbox{ND} - \mbox{NOT} DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, \mbox{NA} - \mbox{NOT} APPLICABLE OR AVAILABLE.

APPROVED BY:

DATE: 4/2/06

K PRIME, INC. SAMPLE ID: MW-3-200603 LABORATORY REPORT LAB NO: 54679 **SAMPLE TYPE:** WATER K PRIME PROJECT: 9984 DATE SAMPLED: 03/23/06 **CLIENT PROJECT: A603726** TIME SAMPLED: 15:05 BATCH ID: 040506W01 **METHOD: DISSOLVED GASES** DATE ANALYZED: 4/5/2006 UNITS: **REFERENCE: RSK 175** μg/L **COMPOUND NAME** CAS NO. REPORTING SAMPLE LIMIT CONC CARBON DIOXIDE 124-38-9 165 84500

NOTES:

 \mbox{ND} - \mbox{NOT} DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, \mbox{NA} - \mbox{NOT} APPLICABLE OR AVAILABLE.

APPROVED BY:

DATE: 4 2104

K PRIME, INC. SAMPLE ID: MW-5-200603 LABORATORY REPORT LAB NO: 54680 **SAMPLE TYPE:** WATER K PRIME PROJECT: 9984 DATE SAMPLED: 03/24/06 **CLIENT PROJECT: A603726** TIME SAMPLED: 8:04 **BATCH ID:** 040506W01 **METHOD: DISSOLVED GASES** DATE ANALYZED: 4/5/2006 **REFERENCE: RSK 175** UNITS: μg/L **COMPOUND NAME** CAS NO. **REPORTING** SAMPLE LIMIT CONC **CARBON DIOXIDE** 124-38-9 165 24900

NOTES:

 \mbox{ND} - \mbox{NOT} DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, \mbox{NA} - \mbox{NOT} APPLICABLE OR AVAILABLE.

APPROVED BY: 1/21/06

K PRIME, INC. **SAMPLE ID:** MW-7-200603 LABORATORY REPORT LAB NO: 54681 **SAMPLE TYPE: WATER** K PRIME PROJECT: 9984 DATE SAMPLED: 03/24/06 **CLIENT PROJECT: A603726** TIME SAMPLED: 12:20 BATCH ID: 040506W01 **METHOD: DISSOLVED GASES** DATE ANALYZED: 4/5/2006 **REFERENCE: RSK 175** UNITS: μg/L **COMPOUND NAME** CAS NO. **REPORTING** SAMPLE LIMIT CONC 124-38-9 CARBON DIOXIDE 165 15000

NOTES:

 \mbox{ND} - \mbox{NOT} DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, \mbox{NA} - \mbox{NOT} APPLICABLE OR AVAILABLE.

APPROVED BY:	<u> </u>	d.	<u>ر</u>	_	
DATE:	4	4	24	06	

K PRIME, INC. SAMPLE ID: MW-14-200603 **LABORATORY REPORT** LAB NO: 54682 **SAMPLE TYPE:** WATER K PRIME PROJECT: 9984 DATE SAMPLED: 03/24/06 **CLIENT PROJECT: A603726** TIME SAMPLED: 11:24 **BATCH ID:** 040506W01 **METHOD: DISSOLVED GASES** DATE ANALYZED: 4/5/2006 **REFERENCE: RSK 175** UNITS: μg/L **COMPOUND NAME** CAS NO. REPORTING SAMPLE LIMIT CONC CARBON DIOXIDE 124-38-9 165 310000

NOTES:

 \mbox{ND} - \mbox{NOT} DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, \mbox{NA} - \mbox{NOT} APPLICABLE OR AVAILABLE.

APPROVED BY: W
DATE: 4/2/04

K PRIME, INC. SAMPLE ID: MW-20-200603 LABORATORY REPORT LAB NO: 54683 **SAMPLE TYPE:** WATER K PRIME PROJECT: 9984 DATE SAMPLED: 03/24/06 **CLIENT PROJECT: A603726** TIME SAMPLED: 9:26 BATCH ID: 040506W01 **METHOD: DISSOLVED GASES** DATE ANALYZED: 4/5/2006 **REFERENCE: RSK 175** UNITS: µg/L **COMPOUND NAME** CAS NO. REPORTING SAMPLE LIMIT CONC CARBON DIOXIDE 124-38-9 165 25100

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, NA - NOT APPLICABLE OR AVAILABLE.

APPROVED BY:

DATE: 4/2/06

K PRIME, INC. MW-21-200603 SAMPLE ID: LABORATORY REPORT LAB NO: 54684 SAMPLE TYPE: WATER K PRIME PROJECT: 9984 DATE SAMPLED: 03/24/06 **CLIENT PROJECT: A603726** TIME SAMPLED: 10:52 BATCH ID: 040506W01 **METHOD: DISSOLVED GASES** DATE ANALYZED: 4/5/2006 UNITS: **REFERENCE: RSK 175** µg/L **COMPOUND NAME** CAS NO. **REPORTING** SAMPLE LIMIT CONC

124-38-9

165

156000

NOTES:

CARBON DIOXIDE

 \mbox{ND} - \mbox{NOT} DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, \mbox{NA} - \mbox{NOT} APPLICABLE OR AVAILABLE.

APPROVED BY:

DATE: 4/2/09

K PRIME, INC. SAMPLE ID: MW-A-200603 54685 LAB NO: LABORATORY REPORT SAMPLE TYPE: WATER K PRIME PROJECT: 9984 DATE SAMPLED: 03/24/06 **CLIENT PROJECT: A603726** TIME SAMPLED: N/A BATCH ID: 040506W01 4/5/2006 METHOD: DISSOLVED GASES DATE ANALYZED: UNITS: μg/L **REFERENCE: RSK 175** REPORTING SAMPLE CAS NO. **COMPOUND NAME** LIMIT CONC 165 150000 CARBON DIOXIDE 124-38-9

NOTES:

 \mbox{ND} - \mbox{NOT} DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, \mbox{NA} - \mbox{NOT} APPLICABLE OR AVAILABLE.

APPROVED BY:	Ú		
DATE:	4	121	106

LABORATORY QC REPORT

SAMPLE ID: L040506W01

DUPLICATE ID: D040506W01

BLANK ID: B040506W01

BATCH ID: 040506W01

ANALYZED DATE: SAMPLE TYPE:

04/05/06 WATER

UNITS:

μg/L

METHOD: DISSOLVED GASSES REFFERENCE: RSK175

ACCURACY (MATRIX SPIKE)

PARAMETER	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
CARBON DIOXIDE	2000	ND	1440	72	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
Į.	LIMIT	RESULT	RESULT	(%)	(%)
CARBON DIOXIDE	165	1440	1203	17.9	±50

METHOD BLANK

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
CARBON DIOXIDE	124-38-9	165	ND

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT

NA - NOT APPLICABLE OR AVAILABLE

MRL - METHOD REPORTING LIMIT

MDL - STATISTICAL METHOD DETECTION LIMIT

"J" - INDICATES REPORTED VALUE AS AN ESTIMATED CONCENTRATION ABOVE THE MDL AND BELOW THE METHOD REPORTING LIMIT.

"B" - INDICATES COMPOUND COMMONLY FOUND IN METHOD BLANK ABOVE THE MDL BUT BELOW THE METHOD REPORTING LIMIT.

K PRIME, INC. SAMPLE ID: MW-A-200603 LABORATORY REPORT LAB NO: 54685 **SAMPLE TYPE:** WATER DATE SAMPLED: 03/24/06 K PRIME PROJECT: 9984 N/A **CLIENT PROJECT: A603726** TIME SAMPLED: BATCH ID: 040506W01 **METHOD: DISSOLVED GASES** DATE ANALYZED: 4/5/2006 **REFERENCE: RSK 175** UNITS: µg/L

 COMPOUND NAME
 CAS NO.
 REPORTING LIMIT
 SAMPLE CONC

 CARBON DIOXIDE
 124-38-9
 165
 150000

NOTES:

 \mbox{ND} - \mbox{NOT} DETECTED AT OR ABOVE THE STATED REPORTING LIMIT, \mbox{NA} - \mbox{NOT} APPLICABLE OR AVAILABLE.

APPROVED BY:	LO.
DATE:	4/21/04

COMMENTS ADDITIONAL Me Geomatrix 9 **EUR 10005** 745.54C 3 N N _ 7 M 2 No. of Containers M PAGE 70602 **GSW/SW** Cooled 44NO3 1+2PCL HAU; 1+362c *0N+1 X 1+160. Preservative Type DATE: 3/2 +/06 SITE SPECIFIC GLOBAL ID NO. REPORTING REQUIREMENTS Tel 707.444.7800 Fax 707.444.7848 × Filtered GEOTRACKER REQUIRED Soil (S), Water (W), Vapor (V), or Other (O) ⋺ Eureka, California 95501-0488 525 Second Street, Suite 203 4 40 mc VOA ilone VOA 12 gal plastic TYPE AND SIZE 1 Pintplastic 1 pint plustic 1 pint 1/05 to インド しょうし 4020VOL よりいしいのよ 12 201 plastic 212019 CONTAINER 1/2 Gal 19656.C Pint plestic 245010 40mc10 TOTAL NUMBER OF CONTAINERS CLIENT INFORMATION PCAC. F.C Inlytices Pint, 10.1 L 13406 1310 SAMPLING COMMENTS. D. V. Sie 1 Siwa." DATE TIME 1240C A CC 16 1527 **ANALYSES** LABORATORY CONTACT: Speits +10hc Ltra 4 REGEIVED BY: \succ ⋋ COMPANY: 1717 LABORATORY ADDRESS 707+ TOTAL G LABORATORY NAME × ¥ ¥ 6.3 PRINTED NAME PRINTED NAME: לבל מונה מונה $\overline{\lambda}$ \mathbf{k} X SIGNATURE SIGNATURE COMPANY COMPANY $\overline{\chi}$ ¥ × X X × DATE TIME シブロ そここた - ZOUE03 14/W-3-20060 07002-1-MW PROJECT NUMBER (1329 +45£2 SAMPLERS (SIGNATURE): *Sep* NUMBER SAMPLE CHAIN-OF-CUSTODY RECORD しゃいいのし 100 500 MW-2 PRINTED NAME: + H // XCC. CA COMPANY GEORGETTIN 1 0 V RELINQUISHED BY: RESULTS TO ALIKE 1225 SAMPLE SHIPMENT METHOD 1505 TIME 14: PROJECT NAME: TURNAROUND TIME: PRINTED NAME PRINTED NAME 10/52/6 3/23/06 3/5 3/66 SIGNATURE DATE COMPANY: COMPANY

COMMENTS ADDITIONAL 9 EUR 10006 Я (KES) PAGE 2 was 2 _ No. of Containers 2 MN 5 **GSW/SW** Cooled 26 113 POY HICH 1603 141503 Halo, 13/03/11 MON * TEC Preservative Type 20/42/06 REPORTING REQUIREMENTS: SITE SPECIFIC GLOBAL ID NO X × FILLETED GEOTRACKER REQUIRED Soil (S), Water (W), Vapor (V), or Other (O) 4237 Plastic 5.48270 TYPE AND SIZE Pintplustic 12 Gal plat. C 1 prot plastic lpint plastic なのとしてのよ DATE: 1 p. n - play +. c ナンコ そのこことの大 CONTAINER 72gul plastic (pint gless fil 40m 10t 40.10 VOA DATE TIME TOTAL NUMBER OF CONTAINERS 10,7 1507 13:0 SAMPLING COMMENTS: CLIENT INFORMATION: SPIT ACCOLA 30/08 ANALYSES LABORATORY ADDRESS $\mathcal{L}_{E,:}$ \mathfrak{c}_{t} LABORATORY CONTACTS LECT LABORATORY NAME: AI 707-468-0401 \mathbf{x} ኣ REGEIVED BY, 207 × 13ce (RECATED NAME × ہلا COMPANY 4 + X 17 405 FON X ¥ さといす せんころ は DATE TIME 7.3 MW-5-200603 11W-14-2006U MW-7-2001605 SAMPLERS (SIGNATURE): SAMPLE NUMBER 1/2/ CHAIN-OF-CUSTODY RECORD PROJECT NUMBER: (52% +46\$ PRINTED NAME : A . TYC. 3 RESULTS TO MILE KEIN Courser SIGNATURE TO & HULL COMPANY: C eutrich ! RELINQUISHED BY: SAMPLE SHIPMENT METHOD: TIME 202 PROJECT NAME: 1226 177 TURNAROUND TIME 3/24/66 3/5-1/08 35/42/6 DATE

🦟 Geomatrix

525 Second Street, Suite 203 Eureka, California 95501-0488 Tel 707.444.7800 Fax 707.444.7848

\$h2/6

6:30 PRINTED NAME

COMPANY

SJGNATURE:

1/2/ac

PRINTED NAME:

PRINTED NAME

PRINTED NAME

COMPANY

SIGNATURE

COMPANY

COMPANY

<u>्</u>

FIIR 10007

CHAIN-0F-	-cusı	CHAIN-OF-CUSTODY RECORD				Щ	~	\bigcap	
PROJECT NAME:	4ME:	SPD Accorbi			DATE: 3/2 4/06		PAGE	ev	OF 3
PROJECT NUMBER:	5226	19 tysk 23	LABORATORY NAME: ALDHCA	CLIENT INFORMATION: SPE Arcata					
RESULTS TO:	Mite	te Kein	LABORATORY ADDRESS: Ukrah						
TURNAROUND TIME	ننا	ye+8							
SAMPLE SHIPMENT METHOD	METHOD.	00.	LABORATORY CONTACTS LA C.		GEOTRACKER REQUIRED			B	ON
	J		LABORATORY PHONE NUMBER.		SITE SPECIFIC GLOBAL ID NO	o see	8	_	
SAMPLE	RS (SAMPLERS (SIGNATURE):	ANALYSES	SES					
			700 20 10 10 10 10 10 10 10 10 10 10 10 10 10		Water (W),	іуе Туре		sners	
DATE	TIME	SAMPLE NUMBER	مرازم درم مرازم مرازم		CONTAINER SOII (S). (V	Preserva Cooled	asw/sw	No. of Co	ADDITIONAL COMMENTS
3/24/66 0	326	MW-20-200605	\$	0 3/1	12 gal 1145tic W	٦		_	
			+	0	plust c (HACZ		_	
			\	101	108toC X	141103		_	
			*	ď	40.00 Jun 04			~	
			`\	5	70×1×0×	H3Fay		7	
2501/00/102/5	750	MV-21-200605	*	21,	instic			-	
			*	10,	plastic	HUU3		_	
			7	9	*	thus,		-	
			*	2,50	icome voit			~	
			×	95 -	40 mc Vest	43804		2	
3/24/00		MW-4-200603	L	1/2 3/4/	plast.c			-	
			\		-plastic	14003		_	
			λ	(6)	λ	14105		_	
			+	000	26 JOA			~	
			\ .	700	40.00 VOM	1300		6	
RELINQUISHED BY	HED E	3Y: , DATE TIME	RECEIVED BY: 1	DATE TIME TOTAL NUMBER OF CONTAINERS:	F CONTAINERS:	_		4	
SIGNATURE: 74 H 74	なれて	yard fry	/7ct PRINTED NAME:	SAMPLING COMMENTS.	ENTS:				
COMPANY: C	2 Permettix	رژی (رژن	COMPANY:						
PRINTED NAME:	K10.	12/16 16:30	PRINTED NAME:	3/21/5/					
COMPANY:			1	02.9					
SIGNATURE:			SIGNATURE.	525 Seco	525 Second Street, Suite 203				
PRINTED NAME: COMPANY:			PRINTED NAME: COMPANY:	Eureka, Califor Tel 707.444.7800	Eureka, California 95501-0488 07.444.7800 Fax 707.444.7848			je	Geomatrix

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

April 5, 2006

Mike Keim, Project Manager Geomatrix Consultants, Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612

Dear Mr. Keim:

Included are the results from the testing of material submitted on March 27, 2006 from the 9329 task 32, F&BI 603278 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GMC0405R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 27, 2006 by Friedman & Bruya, Inc. from the Geomatrix Consultants, Inc. 9329 task 32, F&BI 603278 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Geomatrix Consultants, Inc.
603278-01	MW-22-200603
603278-02	MW-23-200603

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/06 Date Received: 03/27/06

Project: 9329 task 32, F&BI 603278

Date Extracted: 03/29/06 Date Analyzed: 03/30/06

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE XYLENES AND TPH AS GASOLINE USING EPA METHODS 8021B AND 8015M

Results Reported as µg/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline S $\frac{\text{Range}(\%)}{(\text{C}_6\text{-C}_{10})}$ (Lixe	Recovery)
MW-22-200603	<1	16	<1	<3	66	104
MW-23-200603 603278-02	<1	<1	<1	<3	<50	106
Method Blank	<1	<1	<1	<3	<50	105

Note: The reporting limit for gasoline is between the MDL and PQL.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/06 Date Received: 03/27/06

Project: 9329 task 32, F&BI 603278

Date Extracted: 03/28/06 Date Analyzed: 04/01/06

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M

Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as µg/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 51-132)
MW-22-200603	<175	102
$\begin{array}{c} MW\text{-}23\text{-}200603 \\ _{603278\text{-}02} \end{array}$	<175	107
Method Blank	<175	132

Note: The reporting limit for motor oil is between the MDL and PQL.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/06 Date Received: 03/27/06

Project: 9329 task 32, F&BI 603278

Date Extracted: 03/28/06 Date Analyzed: 04/01/06

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M

Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as µg/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{(ext{C}_{10} ext{-} ext{C}_{25})}$	Surrogate (% Recovery) (Limit 68-143)
MW-22-200603	<50	102
MW-23-200603 603278-02	<50	107
Method Blank	<50	132

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/06 Date Received: 03/27/06

Project: 9329 task 32, F&BI 603278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHODS 8021B AND 8015M

Laboratory Code: 603278-02 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	μg/L (ppb)	<1	<1	nm
Toluene	μg/L (ppb)	<1	<1	nm
Ethylbenzene	μg/L (ppb)	<1	<1	nm
Xylenes	$\mu g/L~(ppb)$	<3	<3	nm
Gasoline	$\mu g/L~(ppb)$	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	μg/L (ppb)	50	102	69-119
Toluene	μg/L (ppb)	50	92	70-123
Ethylbenzene	μg/L (ppb)	50	98	78 - 112
Xylenes	μg/L (ppb)	150	93	74 - 112
Gasoline	μg/L (ppb)	1,000	90	63-129

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/06 Date Received: 03/27/06

Project: 9329 task 32, F&BI 603278

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL USING EPA METHOD 8015M

Laboratory Code	e: Laboratory Cont	rol Sampl	e Silica Gel			
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Motor Oil	μg/L (ppb)	5,000	94	96	74-139	2

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/06 Date Received: 03/27/06

Project: 9329 task 32, F&BI 603278

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING EPA METHOD 8015M

Laboratory Code	e: Laboratory Cont	rol Sampl	e Silica Gel			
-			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel	ug/L (ppb)	2,500	111	120	74-139	8

April 6, 2006

FAL Project ID: 3781

Ms. Sheri Speaks Alpha Analytical Laboratories, Inc. 208 Mason Street Ukiah, CA 95482

Dear Ms. Speaks,

Enclosed are the results for Frontier Analytical Laboratory project 3781. This corresponds to your subcontract order # A603727. The nine aqueous samples received on 3/29/06 were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. A matrix spike and matrix spike duplicate (MS/MSD) were analyzed on sample 3781-004-SA (Alpha ID; A603727-04) at no additional charge. Alpha Analytical Laboratories, Inc. requested a turnaround time of ten business days for project 3781.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains the project-sample tracking log, a qualifier reference guide, a ML/MDL form and the analytical results. The Sample Receipt section contains your original chain of custody, our sample login form and a sample photo. The EDD you requested has been sent to you via email.

If you have any questions regarding project 3781, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Charles of Carlotte States

Control of the second

and the second

Bradley B. Silverbush Director of Operations

> FRONTIER ANALYTICAL LABORATORY 5172 Hillsdale Circle • El Dorado Hills, CA 95762 Tel (916) 934-0900 • Fax (916) 934-0999 www.frontieranalytical.com

000001 of 000022

and the second

CONTRACTOR OF THE PARTY OF THE

CORNEL TO SECURE OF THE PARTY O

The state of the s

Frontier Analytical Laboratory Sample Tracking Log

FAL Project ID: 3781

Received on: 03/29/2006

Project Due: 04/13/2006 Storage: R1

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
3781-001-SA	1	A603727	A603727-01	EPA 1613 D/F	Aqueous	03/23/2006	12:25 pm	03/23/2007
3781-002-SA	1	A603727	A603727-02	EPA 1613 D/F	Aqueous	03/23/2006	02:11 pm	03/23/2007
3781-003-SA	1	A603727	A603727-03	EPA 1613 D/F	Aqueous	03/23/2006	03:05 pm	03/23/2007
3781-004-SA	1	A603727	A603727-04	EPA 1613 D/F	Aqueous	03/24/2006	08:04 am	03/24/2007
3781-005-SA	1	A603727	A603727-05	EPA 1613 D/F	Aqueous	03/24/2006	12:20 pm	03/24/2007
3781-006-SA	1	A603727	A603727-06	EPA 1613 D/F	Aqueous	03/2	11:24 am	03/24/2007
3781-007-SA	1	A603727	A603727-07	EPA 1613 D/F	Aqueous	03/24/2006	09:26 am	03/24/2007
3781-008-SA	1	A603727	A603727-08	EPA 1613 D/F	Aqueous	03/24/2006	10:52 am	03/24/2007
3781-009-SA	1	A603727	A603727-09	EPA 1613 D/F	Aqueous	03/24/2006	NP	03/24/2007

Qualifier Reference Guide

A	.]	Isotopi	c Labele	d Standard	outside	QC	range b	ut	signal	to	noise	ratio	is	>1	0:	1
---	-----	---------	----------	------------	---------	----	---------	----	--------	----	-------	-------	----	----	----	---

- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers
- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J[‡] Analyte concentration is below calibration range
- M Maximum possible concentration
- NP Not Provided
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection
- Analyte Not Detected
- + Spike levels were inappropriate versus the levels in the sample

[‡] "J" values are equivalent to DNQ (detected but not quantified) for California Toxics Rule (CTR)/National Pollutant Discharge Elimination System (NPDES) samples

EPA Method 1613/8290 Aqueous MDL (SPE Extraction)

Analyte	ML	MDL
2,3,7,8-TCDD	5.00	0.488
1,2,3,7,8-PeCDD	25.0	0.503
1,2,3,4,7,8-HxCDD	25.0	0.681
1,2,3,6,7,8-HxCDD	25.0	0.689
1,2,3,7,8,9-HxCDD	25.0	0.793
1,2,3,4,6,7,8-HpCDD	25.0	0.714
OCDD	50.0	2.15
2,3,7,8-TCDF	5.00	0.435
1,2,3,7,8-PeCDF	25.0	0.572
2,3,4,7,8-PeCDF	25.0	0.543
1,2,3,4,7,8-HxCDF	25.0	0.291
1,2,3,6,7,8-HxCDF	25.0	0.285
1,2,3,7,8,9-HxCDF	25.0	0.317
2,3,4,6,7,8-HxCDF	25.0	0.276
1,2,3,4,6,7,8-HpCDF	25.0	0.373
1,2,3,4,7,8,9-HpCDF	25.0	0.540
OCDF	50.0	1.01

Project 3665, extracted 1/30/06; analyzed 2/6/06. Based on a 1.0 Liter sample, pg/L.

FAL ID: 3781-001-MB Client ID: Method Blank Matrix: Aqueous

Date Extracted: 04-03-2006 Date Received: NA Amount: 1.000 L

ICal: PCDDFAL3-1-12-06 GC Column: DB5 Units: pg/L

Acquired: 04-05-2006 WHO TEQ: 0.00

Batch No: X0824

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual #Hom
2.3,7.8-TCDD	_	1.51		_				
1,2,3,7,8-PeCDD	-	2.82		-				
1,2,3,4,7,8-HxCDD	_	5.17		-				
1,2,3,6,7,8-HxCDD	_	5.26		-	Total Tetra-Dioxins	-	1.51	0
1,2,3,7,8,9-HxCDD	-	6.69		-	Total Penta-Dioxins		2.82	0
1,2,3,4,6,7,8-HpCDD	_	5.82		-	Total Hexa-Dioxins	-	6.69	0
OCDD	-	8.39		-	Total Hepta-Dioxins	-	5.82	0
2,3,7,8-TCDF	_	1.97		_				•
	_			_	•			
1,2,3,7,8-PeCDF	•	3.31		_				
2,3,4,7,8-PeCDF	-	2.27		_				
1,2,3,4,7,8-HxCDF	-	2.27		-				
1,2,3,6,7,8-HxCDF	-			-				
2,3,4,6,7,8-HxCDF	-	2.62		-	Total Tetra-Furans	_	1.97	0
1,2,3,7,8,9-HxCDF	-	3.07		-			3.61	0
1,2,3,4,6,7,8-HpCDF	-	2.41		-	Total Penta-Furans	-		0
1,2,3,4, ⁷ ,8,9-HpCDF	-	3.83		-	Total Hexa-Furans	-	3.07	
OCDF	-	8.88		-	Total Hepta-Furans	-	3.83	0
Internal Standards	% Rec	QC Limits	Qual					

	mterral etandarde	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	13C-2,3,7,8-TCDD	76.2	25.0 - 164	
	13C-1.2.3.7.8-PeCDD	69.8	25.0 - 181	
	13C-1,2,3,4,7,8-HxCDD	70.6	32.0 - 141	
	13C-1,2,3,5,7,8-HxCDD	87.5	28.0 - 130	
	3C-1,2,3,4,6,7,8-HpCDD	72.8	23.0 - 140	
	13C-OCDD	65.1	17.0 - 157	
	13C-2,3,7,8-TCDF	73.6	24.0 - 169	
	13C-1,2,3,7,8-PeCDF	63.9	24.0 - 185	
	13C-2.3.4.7.8-PeCDF	69.5	21.0 - 178	
	13C-1.2.3.4.7.8-HxCDF	72.3	26.0 - 152	
	13C-1,2,3,6,7,8-HxCDF	84.9	26.0 - 123	
	13C-2.3.4 6.7.8-HxCDF	80.2	28.0 - 136	
	13C-1,2,3,7,8,9-HxCDF	66.3	29.0 - 147	
13	3C-1,2,3,4,6,7,8-HpCDF	81.0	28.0 - 143	
	3C-1,2,3,4,7,8,9-HpCDF	70.0	26.0 - 138	
	13C-OCDF	64.6	17.0 - 157	

Clear up Surrogate

37CI-2,3,7,8-TCDD 81.1 35.0 - 197

NG Reviewed By: 4/6/06 Date:_

FAL ID: 3781-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X0824

Date Extracted: 04-03-2006 Date Received: NA

Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-1-12-06 GC Column: DB5 Units: ng/ml

Acquired: 04-05-2006 WHO TEQ: NA

Compound	Conc	QC Limits
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	10.5 51.7 53.1 53.2 52.1 54.4 105	6.70 - 15.8 35.0 - 71.0 35.0 - 82.0 38.0 - 67.0 32.0 - 81.0 35.0 - 70.0 78.0 - 144
2,3,7,8-TCDF 1,2,3 7,8-PeCDF 2,3,4 7,8-PeCDF 1,2,3,4 7,8-HxCDF 1,2,3,6 7,8-HxCDF 2,3,4,6 7,8-HxCDF 1,2,3,7 8,9-HxCDF 1,2,3,4,6 7,8-HpCDF 1,2,3,4,7 8,9-HpCDF OCDF	9.16 47.4 49.5 51.8 55.0 53.1 52.5 52.1 52.5	7.50 - 15.8 40.0 - 67.0 34.0 - 80.0 36.0 - 67.0 42.0 - 65.0 35.0 - 78.0 39.0 - 65.0 41.0 - 61.0 39.0 - 69.0 63.0 - 170
Internal Standards	% Rec	QC Limits
13C-2,3,7,8-TCDD 13C-1,2,3 7,8-PeCDD 13C-1,2,3,4.7,8-HxCDD 13C-1,2,3,6.7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	98.4 85.2 83.1 103 80.3 79.6	20.0 - 175 21.0 - 227 21.0 - 193 25.0 - 163 26.0 - 166 13.0 - 198
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,3,4,7,8,9-HpCDF	86.5 77.4 82.7 82.1 99.7 94.9 76.2 92.8 76.9 79.2	22.0 - 152 21.0 - 192 13.0 - 328 19.0 - 202 21.0 - 159 22.0 - 176 17.0 - 205 21.0 - 158 20.0 - 186 13.0 - 198
Cleanup Surrogate		
37CI-2,3,7,8-TCDD	107	31.0 - 191

Reviewed By: DN

Date: 4/1/61

FAL ID: 3781-001-SA Client ID: A603727-01 Matrix: Aqueous Batch No: X0824

Date Extracted: 04-03-2006 Date Received: 03-29-2006 Amount: 0.949 L ICal: PCDDFAL3-1-12-06 GC Column: DB5 Units: pg/L

Acquired: 04-05-2006 WHO TEQ: 0.00117

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual #Hom
2,3,7,8-TCDD	-	1.75		_				
1,2,3,7,8-PeCDD	-	1.66		_				
1,2,3,4,7,8-HxCDD	-	3.92		-				
1,2,3,6,7,8-HxCDD	-	4.06		_	Total Tetra-Dioxins	_	1.75	0
1,2,3,7,8,9-HxCDD	-	5.06		-	Total Penta-Dioxins	_	1.66	Ö
1,2,3,4,6, ^{-,} ,8-HpCDD	-	3.64		_	Total Hexa-Dioxins	_	5.06	Ö
OCDD	11.7	-	J	0.00117	Total Hepta-Dioxins	-	3.64	Ö
2,3,7,8-TCDF	-	1.48		-				
1,2,3,7,8-PeCDF	-	2.48		-				
2,3,4,7,8-PeCDF	-	2.48		-				
1,2,3,4,7,8-HxCDF	-	1.15		-				
1,2,3,6,7,8-HxCDF	-	1.29		-				
2,3,4,6,7,8-HxCDF	-	1.35		-				
1,2,3,7,8,9-HxCDF	-	1.50		-	Total Tetra-Furans	-	1.48	0
1,2,3,4,6,7,8-HpCDF	-	1.28		-	Total Penta-Furans	-	2.50	0
1,2,3,4,7,8,9-HpCDF	-	2.20		-	Total Hexa-Furans	-	1.50	Ō
OCDF	•	5.58		-	Total Hepta-Furans	-	2.20	Ō

Internal Standards	% Rec	QC Limits	Qual
13C-2,5,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	88.3 77.7 80.5 95.0 79.2 72.5		
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,3,9-HpCDF	88.2 82.7 79.6 78.1 93.7 92.7 73.8 88.0 72.1 71.1	24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	
Class			

Cleanup Surrogate

37CI-2,3,7,8-TCDD

93.6 35.0 - 197

Analyst: Date: 4/6/062

Reviewed By: DAN

Date: 4/4/04

FAL ID: 3781-002-SA Client ID: A603727-02 Matrix: Aqueous Batch No: X0824

Date Extracted: 04-03-2006 Date Received: 03-29-2006

Amount: 0.946 L

ICal: PCDDFAL3-1-12-06 GC Column: DB5

Units: pg/L

Acquired: 04-05-2006 WHO TEQ: 0.00

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual #Hom
2 3,7,8-TCDD 1,2,3,7,8-PeCDD	-	0.891		-				
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	-	1.80 3.57		-				
1,2,3,7,8,9-HxCDD	-	3.69 4.70		-	Total Tetra-Dioxins Total Penta-Dioxins		0.891 1.80	0
1,2,3,4,6,7,8-HpCDD OCDD	-	4.99 7.44		-	Total Hexa-Dioxins Total Hepta-Dioxins	-	4. 7 0 4. 9 9	0
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	- - - -	1.52 2.05 2.05 1.10 1.17 1.30		- - - - -	·			
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	- - -	1.38 0.729 1.21 4.62		- - -	Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans		1.52 2.07 1.38 1.21	0 0 0

Internal Standards	% Rec	QC Limits	Qual
13C-2.3,7,8-TCDD	88.0	25.0 - 164	
13C-1,2,3,7,8-PeCDD	77.5	25.0 - 181	
13C-1,2,3,4,7,8-HxCDD	81.4	32.0 - 141	
13C-1,2,3,6,7,8-HxCDD	98.3	28.0 - 130	
13C-1,2,3,4,6,7,8-HpCDD	81.1	23.0 - 140	
13C-0CDD	78.7	17.0 - 157	
13C-2,3,7,8-TCDF	85.2	24.0 - 169	
13C-1,2,3,7,8-PeCDF	76.5	24.0 - 185	
13C-2,3,4,7,8-PeCDF	77.7	21.0 - 178	
13C-1,2,3,4,7,8-HxCDF	83.3	26.0 - 152	
13C-1,2,3,6,7,8-HxCDF	93.6	26.0 - 123	
13C-2,3,4,6,7,8-HxCDF	95.6	28.0 - 136	
13C-1,2,3,7,8,9-HxCDF	75.7	29.0 - 147	
13C-1,2,3,4,6,7,8-HpCDF	88.9	28.0 - 143	
13C-1,2,3,4,7,8,9-HpCDF	75.5	26.0 - 138	
13C-1,2,3,4,7,8,9-HpCDF	75.1	17.0 - 157	
O			

Cleanup Surrogate

37CI-2.3,7,8-TCDD

98.1 35.0 - 197

Analyst Date:

Reviewed By:_____DN 4/1/01

FAL ID: 3781-003-SA Client ID: A6037:27-03 Matrix: Aqueous Batch No: X0824

Date Extracted: 04-03-2006 Date Received: 03-29-2006 Amount: 0.915 L ICal: PCDDFAL3-1-12-06 GC Column: DB5 Units: pg/L Acquired: 04-05-2006 WHO TEQ: 0.00235

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual #Hom
2,3,7,8-TCDD		1.56		_				
1,2,3.7,8-PeCDD	_	2.23		_				
1,2,3,4.7,8-HxCDD	-	4.45		_				
1,2,3,6 7,8-HxCDD	-	4.39			Total Tetra-Dioxins		1.56	0
1,2,3,7 8,9-HxCDD	_	5.37		-	Total Penta-Dioxins	-	2.23	0
1,2,3,4,6,7,8-HpCDD	_	3.77		_	Total Hexa-Dioxins	-	5.37	0
OCDD	23.5	-	J	0.00235	Total Hepta-Dioxins	-	3.77	0
			·	0.00200	rotal riepta-bioxilis	-	3.77	U
2,3,7,8-TCDF	-	1.41		_				
1,2,3,7,8-PeCDF	-	1.99		_				
2,3,4,7,8-PeCDF	-	1.95		_				
1,2,3,4,7,8-HxCDF	-	1.08		_				
1,2,3,6,7,8-HxCDF	-	1.18		_				
2,3,4,6,7,8-HxCDF	-	1.28		_				
1,2,3,7,8,9-HxCDF	-	1.51		_	Total Tetra-Furans	_	1.41	0
1,2,3,4,6,7,8-HpCDF	-	2.14		-	Total Penta-Furans	_	1.99	0
1,2,3,4,7,8,9-HpCDF	_	4.14		_	Total Hexa-Furans	_	1.51	0
OCDF	-	8.13		_	Total Hepta-Furans	_	4.14	0
					rotar ropta rataris	-	4.14	U
Internal Standards	% Rec	QC Limits	Qual					
13C-2,3,7,8-TCDD	83.2	25.0 - 164						
13C-1,2,3.7,8-PeCDD	72.2	25.0 - 181						
13C-1,2,3,4.7,8-HxCDD	78.4	32.0 - 141						
13C-1,2,3,6,7,8-HxCDD	89.3	28.0 - 130						
13C-1,2,3,4,6.7,8-HpCDD	66.1	23.0 - 140						
13C-OCDD	58.2	17.0 - 157						
130-000	36.2	17.0 - 157						
13C-2,3,7,8-TCDF	78.0	24.0 - 169						
13C-1,2,3,7,8-PeCDF	70.6	24.0 - 185						
13C-2,3,4,7,8-PeCDF	70.3	21.0 - 178						
13C-1,2,3,4,7,8-HxCDF	82.0	26.0 - 152						
13C-1,2,3,6,7,8-HxCDF	90.9	26.0 - 123						
13C-2,3,4,6,7,8-HxCDF	87.3	28.0 - 136						
13C-1,2,3,7,8,9-HxCDF	72.2	29.0 - 147						
13C-1,2,3,4,6,7,8-HpCDF	80.0	28.0 - 143						
13C-1,2,3,4,7.8,9-HpCDF	63.0	26.0 - 138						
13C-OCDF		17.0 - 157						
100-0001	50.0	11.0 - 101						
Cleanus Suggests								
Cleanup Surrogate								
37CI-2,3,7,8-TCDD	90.3	35.0 - 197						

Analyst: A Date: 1/6/16

Reviewed By: 291

FAL ID: 3781-004-SA Client ID: A603727-04 Matrix: Aqueous Batch No: X0824 Date Extracted: 04-03-2006 Date Received: 03-29-2006

Amount: 0.967 L

ICal: PCDDFAL3-1-12-06 GC Column: DB5

Units: pg/L

Acquired: 04-05-2006 WHO TEQ: 0.950

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual	#Hom
2,3,7,8-TCDD	-	1.33		-					
1,2,3,7,8-PeCDD	-	2.64		-					
1,2,3,4,7,8-HxCDD	-	4.30		-					
1,2,3,6,7,8-HxCDD	-	4.52		-	Total Tetra-Dioxins	_	1.33		0
1,2,3,7,8,9-HxCDD	-	5.65		-	Total Penta-Dioxins	-	2.64		ŏ
1,2,3,4,6,7,8-HpCDD	51.9			0.519	Total Hexa-Dioxins	23.7		J	2
OCDD	553	-		0.0553	Total Hepta-Dioxins	109	-		2
2,3,7,8-TCDF	· ·	1.69		-					
1,2,3,7,8-PeCDF	-	4.19		-					
2,3,4,7,8-PeCDF	-	4.01		-					
1,2,3,4,7,8-HxCDF	-	2.05		-					
1,2,3,6,7,8-HxCDF	-	2.19		-					
2,3,4,6,7,8-HxCDF	-	2.47		-					
1,2,3,7,3,9-HxCDF	-	3.01		-	Total Tetra-Furans	-	1.69		0
1,2,3,4,6,7,8-HpCDF	36.3	-		0.363	Total Penta-Furans	-	4.19		Ö
1,2,3,4,7,8,9-HpCDF	-	3.89		-	Total Hexa-Furans	43.5	_		2
OCDF	124	-		0.0124	Total Hepta-Furans	131	-		2
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	76.1	25.0 - 164							
13C-1,2,3,7,8-PeCDD	72.4	25.0 - 181							
13C-1,2,3,4,7,8-HxCDD	81.8	32.0 - 141							
13C-1.2.3.6.7.8-HxCDD	97.0								

130-1,2,3,0,7,0-113000	97.0	20.0 - 130
13C-1,2,3,4,6,7,8-HpCDD	73.7	23.0 - 140
13C-OCDD	58.9	17.0 - 157
13C-2,3,7,8-TCDF	79.4	24.0 - 169
13C-1,2,3,7,8-PeCDF	71.1	24.0 - 185
13C-2,3,4,7,8-PeCDF	74.2	21.0 - 178
13C-1,2,3,4,7,8-HxCDF	102	26.0 - 152
13C-1,2,3,6,7,8-HxCDF	116	26.0 - 123
13C-2,3,4,6,7,8-HxCDF	108	28.0 - 136
13C-1,2,3,7,8,9-HxCDF	84.1	29.0 - 147
13C-1,2,3,4,6,7,8-HpCDF	98.1	28.0 - 143
13C-1,2,3,4,7,3,9-HpCDF	76.9	26.0 - 138
13C-OCDF	65.4	17.0 - 157

Cleanup Surrogate

37CI-2,3,7,8-TCDD

89.5 35.0 - 197

Analyst: A

Reviewed By: DN

Date: 4/6/06

FAL ID: 3781-004-MS/MSD Client ID: A6037.27-04 Matrix: Aqueous Date Extracted: 04-03-2006 Date Received: 03-29-2006 Sample Amount: 0.967 L MS Amount: 0.495 L MSD Amount: 0.474 L ICal: PCDDFAL3-1-12-06 Batch No: X0824

Units: pg/L

MS Acquired: 2006-04-06 MSD Acquired: 2006-04-06 GC Column: DB5

Compound	Amount Spiked (pg)	Sample Amount	MS Amount	MSD Amount	% RSD	Qual
2,3,7,8-TCDD 1,2,3 7,8-PeCDD 1,2,3,4 7,8-HxCDD 1,2,3,6 7,8-HxCDD 1,2,3,7 8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	200 1000 1000 1000 1000 1000 2000	51.9 553	505 2440 2370 2410 2410 2440 5080	514 2530 2480 2460 2380 2490 5250	2.43 0.830 0.851 1.69 5.17 2.62 1.02	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	200 1000 1000 1000 1000 1000 1000 1000	36.3 - 124	465 2300 2330 2290 2590 2320 2260 2210 2140 4200	471 2390 2380 2420 2510 2430 2450 2340 2260 4670	3.09 0.881 1.75 1.75 7.29 0.00 3.51 1.88 0.939 6.42	
Internal Standards		% Rec	% Rec	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	2000 2000 2000 2000 2000 4000 2000 2000	76.1 72.4 81.8 97.0 73.7 58.9 79.4 71.1 74.2 102 116 108 84.1 98.1 76.9 65.4	79.6 78.0 91.0 105 77.2 69.6 90.9 79.4 83.6 114 116 117 98.8 108 88.0 81.3	77.0 85.3 76.7 90.8 65.9 60.0 75.2 74.3 79.1 91.4 103 94.6 76.8 88.6 70.4 65.0	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	
Cleanup Surrogate						
37Cl-2,3,7,8-TCDD	800	89.5	93.7	89.2	35.0 - 197	

FAL ID: 3781-005-SA Client ID: A603727-05 Matrix: Aqueous Batch No: X0824

Date Extracted: 04-03-2006 Date Received: 03-29-2006 Amount: 0.967 L

ICal: PCDDFAL3-1-12-06 GC Column: DB5 Units: pg/L

Acquired: 04-05-2006 WHO TEQ: 0.548

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual	#Hom
2 3,7,8-TCDD	-	1.32		_					
1,2,3,7,8-PeCDD	-	2.23		-					
1.2.3.4.7.8-HxCDD	-	3.69		-					
1,2,3,€,7,8-HxCDD	-	3.84		-	Total Tetra-Dioxins	-	1.32		0
1,2,3,7,8,9-HxCDD	-	4.70		-	Total Penta-Dioxins	-	2.23		0
1,2,3,4,6,7,8-HpCDD	35.9	-		0.359	Total Hexa-Dioxins	17.8	-	J	2
OCDD	347	-		0.0347	Total Hepta-Dioxins	82.4	-		2
2,3,7,8-TCDF	-	1.00		-					
1,2,3,7,8-PeCDF	-	1.87		-					
2,3,4,7,8-PeCDF	-	1.79		-					
1,2,3,4,7,8-HxCDF	-	1.57		-					
1,2,3,6,7,8-HxCDF	-	1.79		-					
2,3,4,6,7,8-HxCDF	-	1.94		-					
1,2,3,7,8,9-HxCDF	-	2.20		-	Total Tetra-Furans	-	1.00		0
1,2,3,4,5,7,8-HpCDF	15.0	-	J	0.150	Total Penta-Furans	6.16	-	J	1
1,2,3,4,7,8,9-HpCDF	-	2.41		-	Total Hexa-Furans	27.3	-		3

0.00473

Total Hepta-Furans

Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	78.3 85.6 96.2	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140	
13C-OCDD	65.0	17.0 - 157	
13C-2,3,7,8-TCDF 13C-1,2.3,7,8-PeCDF 13C-2,3.4,7,8-PeCDF	85.9 75.8 79.8	24.0 - 169 24.0 - 185 21.0 - 178	
13C-1,2,3 4,7,8-HxCDF 13C-1,2,3 6,7,8-HxCDF 13C-2,3,4 6,7,8-HxCDF	93.4 98.7 92.9	26.0 - 123	
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	77.1	29.0 - 147 28.0 - 143	
13C-1,2,3,4 7,8,9-HpCDF 13C-OCDF	65.4		

47.3

Cleanup Surrogate

1,2,3,4,7,8,9-HpCDF

37CI-2,3,7,8-TCDD

104 35.0 - 197

4/6/06 Date:_

62.2

FAL ID: 3781-006-SA Client ID: A6037:27-06 Matrix: Aqueous Batch No: X0824

Date Extracted: 04-03-2006 Date Received: 03-29-2006 Amount: 0.960 L ICal: PCDDFAL3-1-12-06 GC Column: DB5 Units: pg/L

Acquired: 04-05-2006 WHO TEQ: 0.00

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual #Hom
2,3,7,8-TCDD		1.56		_				
1,2,3 7,8-PeCDD	_	2.04		_				
1,2,3,4 7,8-HxCDD	-	3.38		_				
1,2,3,6 7,8-HxCDD	-	3.43		_	Total Tetra-Dioxins	_	1.56	0
1,2,3,7 8,9-HxCDD	-	4.30		-	Total Penta-Dioxins	_	2.04	0
1,2,3,4,6.7,8-HpCDD	-	2.98		_	Total Hexa-Dioxins	_	4.30	0
OCDD	-	9.73		-	Total Hepta-Dioxins	_	2.98	0
					rotal ropid Bloxing	-	2.50	U
2,3,7,8-TCDF	-	1.06		-				
1,2,3,7,8-PeCDF	-	1.72		_				
2,3,4,7,8-PeCDF	-	1.80		-				
1,2,3,4,7,8-HxCDF	-	0.841		-				
1,2,3,6,7,8-HxCDF	-	0.942		-				
2,3,4,6,7,8-HxCDF	-	1.00		-				
1,2,3,7,8,9-HxCDF	-	1.07		-	Total Tetra-Furans	_	1.06	0
1,2,3,4,6,7,8-HpCDF	-	1.38		_	Total Penta-Furans	_	1.80	Ö
1,2,3,4,7,8,9-HpCDF	-	2.30		-	Total Hexa-Furans	_	1.07	ő
OCDF	-	5.03		_	Total Hepta-Furans	_	2.30	0
							2.00	Ŭ
Internal Standards	% Rec	QC Limits	Qual					
mermi otarioaras	70 1100	QO LIIIIII	Quai					
13C-2,3,7,8-TCDD	88.7	25.0 - 164						
13C-1,2,3,7,8-PeCDD	80.7	25.0 - 181						
13C-1,2,3,4,7,8-HxCDD	82.4	32.0 - 141						
13C-1,2,3,6,7,8-HxCDD	98.3	28.0 - 130						
13C-1,2,3,4,6 7,8-HpCDD	75.1	23.0 - 140						
13C-OCDD	69.7	17.0 - 157						
13C-2,3,7,8-TCDF	83.6	24.0 - 169						
13C-1,2,3,7,8-PeCDF	77.0	24.0 - 185						
13C-2,3,4,7,8-PeCDF	72.5	21.0 - 178						
13C-1,2,3,4,7,8-HxCDF	89.7	26.0 - 152						
13C-1,2,3,6,7,8-HxCDF	101	26.0 - 123						
13C-2,3,4,6,7,8-HxCDF	96.8	28.0 - 136						
13C-1,2,3,7,8,9-HxCDF	80.7	29.0 - 147						
13C-1,2,3,4,6,7,8-HpCDF	93.3	28.0 - 143						
13C-1,2,3,4,7,8,9-HpCDF	78.7	26.0 - 138						
13C-OCDF	68.8	17.0 - 157						
Cleanup Surrogate								
27CL 2 2 7 0 TODD	407	05.0 405						
37Cl-2,3,7,8-TCDD	107	35.0 - 197						

Analyst: _______

Reviewed By: DN Date: 4/L/oL

FAL ID: 3781-007-SA Client ID: A603727-07 Matrix: Aqueous Batch No: X0824 Date Extracted: 04-03-2006 Date Received: 03-29-2006 Amount: 0.968 L

ICal: PCDDFAL3-1-12-06 GC Column: DB5 Units: pg/L Acquired: 04-05-2006 WHO TEQ: 79.0

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc	DL	Qual #Hom
2,3,7,8-TCDD	-	1.47		-				
1,2,3,7,8-PeCDD	4.83	-	J	4.83				
1,2,3,4,7,8-HxCDD	-	9.85		-				
1,2,3,6,7,8-HxCDD	138	-		13.8	Total Tetra-Dioxins	34.9	_	5
1,2,3,7,8,9-HxCDD	20.1	-	J	2.01	Total Penta-Dioxins	48.2	_	3
1,2,3,4,6,7,8-HpCDD	3770	-		37.7	Total Hexa-Dioxins	699	_	6
ÓCDD	45300	-		4.53	Total Hepta-Dioxins	7570	-	2
2,3,7,8-TCDF	_	1.33		-				*
1,2,3,7,8-PeCDF	-	4.70		-				
2,3,4,",8-PeCDF	-	4.57		-				
1,2,3,4,7,8-HxCDF	20.4	-	J	2.04				
1,2,3,6,7,8-HxCDF	-	3.93		-				
2,3,4,6,7,8-HxCDF	16.9	-	J	1.69				
1,2,3,7,8,9-HxCDF	_	4.95		-	Total Tetra-Furans	30.5	_	4
1,2,3,4,6,7,8-HpCDF	1090	-		10.9	Total Penta-Furans	122	_	5
1,2,3,4,7,8,9-HpCDF	105	_		1.05	Total Hexa-Furans	1310		7
OCDF	4910	-		0.491	Total Hepta-Furans	5410	-	3

Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	103 85.4	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	103 113 106 87.6 103 84.1	24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	

Cleanur Surrogate

37CI-2,3,7,8-TCDD

104 35.0 - 197

Analyst: Date: 4/0///

Reviewed By: AN

Date: 4/66

4/6/06

Date:

Date Extracted: 04-03-2006 ICal: PCDDFAL3-1-12-06 Acquired: 04-05-2006 FAL ID: 3781-008-SA Date Received: 03-29-2006 GC Column: DB5 WHO TEQ: 0.353 Client ID: A603727-08 Amount: 0.953 L Units: pg/L Matrix: Aqueous Batch No: X0824 DL Qual WHO Tox Compound DL Qual #Hom Compound Conc Conc 2.3,7,8-TCDD 1.45 1,2,3,7,8-PeCDD 3.70 1,2,3,4,7,8-HxCDD 5.73 5.40 **Total Tetra-Dioxins** 1.45 0 1,2,3,6,7,8-HxCDD Total Penta-Dioxins 3.70 0 1,2,3,7,8,9-HxCDD 6.54 1,2,3,4,6,7,8-HpCDD 24.1 0.241 **Total Hexa-Dioxins** 6.54 0 0.0314 **Total Hepta-Dioxins** 45.2 OCDD 314 2,3,7,8-TCDF 1.35 1,2,3,7,8-PeCDF 1.97 2,3,4,7,8-PeCDF 2.05 1,2,3,4,7,8-HxCDF 1.09 1.11 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1.16 1.35 1,2,3,7,8,9-HxCDF 1.27 **Total Tetra-Furans** 1,2,3,4,6,7,8-HpCDF 7.84 0.0784 Total Penta-Furans 2.05 0 5.86 1,2,3,4,7,8,9-HpCDF 1.94 Total Hexa-Furans 0.00230 23.0 Total Hepta-Furans 32.1 OCDF % Rec QC Limits Internal Standards Qual 13C-2,3,7,8-TCDD 94.6 25.0 - 164 13C-1,2,3,7,8-PeCDD 86.5 25.0 - 181 13C-1,2,3,4,7,8-HxCDD 32.0 - 141 93.6 103 28.0 - 130 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 79.5 23.0 - 140 72.6 17.0 - 157 13C-OCDD 92.2 24.0 - 169 13C-2:,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 84.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 82.7 21.0 - 178 13C-1,2,3,4,7,8-HxCDF 96.4 26.0 - 152 13C-1,2,3,6,7,8-HxCDF 109 26.0 - 123 13C-2,3,4,6,7,8-HxCDF 111 28.0 - 136 29.0 - 147 13C-1,2,3,7,8,9-HxCDF 98.6 13C-1,2,3,4,6,7,8-HpCDF 101 28.0 - 143 13C-1,2,3,4,7,8,9-HpCDF 77.0 26.0 - 138 71.8 17.0 - 157 13C-OCDF Cleanup Surrogate 37CI-2:,3,7,8-TCDD 106 35.0 - 197 Reviewed By:_ DN

Date Extracted: 04-03-2006

FAL ID: 3781-009-SA

ICal: PCDDFAL3-1-12-06 Acquired: 04-05-2006 Client ID: A6037'27-09 Date Received: 03-29-2006 GC Column: DB5 WHO TEQ: 0.235 Matrix: Aqueous Amount: 0.962 L Units: pg/L Batch No: X0824 Compound Conc DL Qual WHO Tox Compound Conc DL Qual #Hom 2.3,7,8-TCDD 1.68 1,2,3,7,8-PeCDD 3.45 1,2,3,4,7,8-HxCDD 6.38 1,2,3,6,7,8-HxCDD 6.11 **Total Tetra-Dioxins** 1.68 0 1,2,3,7,8,9-HxCDD 7.43 Total Penta-Dioxins 3.45 0 1,2,3,4,6,7,8-HpCDD 16.8 0.168 **Total Hexa-Dioxins** 7.43 0 OCDD 326 0.0326 Total Hepta-Dioxins 27.9 2 2,3,7,8-TCDF 1.14 1,2,3,7,8-PeCDF 4.02 2,3,4,7,8-PeCDF 4.17 1,2,3,4,7,8-HxCDF 1.57 1,2,3,6,7,8-HxCDF 1.77 2,3,4,6,7,8-HxCDF 1.87 1,2,3,7,8,9-HxCDF 1.98 Total Tetra-Furans 12.2 1,2,3,4,6,7,8-HpCDF 3.24 0.0324 Total Penta-Furans 4.22 0 1,2,3,4,7,8,9-HpCDF 2.27 Total Hexa-Furans 4.99 0 OCDF 15.7 0.00157 Total Hepta-Furans 15.0 Internal Standards % Rec QC Limits Qual 13C-2 3,7,8-TCDD 82.6 25.0 - 164 13C-1,2,3,7,8-PeCDD 76.3 25.0 - 181 13C-1,2,3,4,7,8-HxCDD 78.9 32.0 - 141 13C-1,2,3,6,7,8-HxCDD 89.6 28.0 - 130 13C-1,2,3,4,6,7,8-HpCDD 71.5 23.0 - 140 13C-OCDD 56.5 17.0 - 157 13C-2.3,7,8-TCDF 87.1 24.0 - 169 13C-1,2,3,7,8-PeCDF 77.3 24.0 - 185 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 78.0 21.0 - 178 90.7 26.0 - 152 13C-1,2,3,6,7,8-HxCDF 103 26.0 - 123 13C-2,3,4,6,7,8-HxCDF 99.8 28.0 - 136 13C-1,2,3,7,8,9-HxCDF 89.8 29.0 - 147 13C-1,2,3,4,6,7,8-HpCDF 92.6 28.0 - 143 13C-1,2,3,4,7,8,9-HpCDF 70.5 26.0 - 138 13C-OCDF 61.4 17.0 - 157 Cleanup Surrogate 37CI-2,3,7,8-TCDD 99.1 35.0 - 197 Analyst Reviewed By: Date: 4/666 Date:

SUBCONTRACT ORDER

Alpha Analytical Laboratories, Inc.

A603727

SENDING LABORATORY:

Alpha Analytical Laboratories, Inc.

208 Mason St. Ukiah, CA 95482 Phone: (707)468-0401

Fax: (707)468-5267 Project Manager: Sheri L. Speaks

RECEIVING LABORATORY:

Frontier Analytical Laboratory

5172 Hillsdale Circle El Dorado, CA 95762

Phone:916-934-0900 Fax: 916-934-0999

Terms: Net 30

Analysis	Due	Expires		Comments	
A603727-01 MW-01-2	00603 [Water] Sam	pled 03/23/06 12:25	5 Pacific V		
Dioxins Full List	04/07/06 12:00	03/23/07 12:25		***************************************	
Containers Supplied:	amber	x2			
A603727-02 MW-02-2	00603 [Water] Sam	pled 03/23/06 14:11	l Pacific		
Dioxins Full List	04/07/06 12:00	03/23/07 14:11			
Containers Supplied:	Lambe	r x2	,		
A603727-03 MW-03-2	00603 [Water] Sam	pled 03/23/06 15:05	5 Pacific		
Dioxins Full List	04/07/06 12:00	03/23/07 15:05	H = 100 - 10		
Containers Supplied:	Lamba	er X2			
A603727-04 MW-05-2	00603 [Water] Sam	pled 03/24/06 08:04	4 Pacific√		
Dioxins Full List	04/07/06 12:00	03/24/07 08:04			
Containers Supplied:	1 Lam	her X2	, ,		
A603727-05 MW-07-2	00603 [Water] Sam	pled 03/24/06 12:20) Pacific √		
Dioxins Full List	04/07/06 12:00	03/24/07 12:20			
Containers Supplied:	1 ambe	r XZ			
A603727-06 MW-14-2	00603 [Water] Sam	pled 03/24/06 11:24	4 Pacific ¹		
Dioxins Full List	04/07/06 12:00	03/24/07 11:24			
Containers Supplied:	1 Lam	her X2	· /		
Sons	Deuls :	3-2806	Wasun	uvery i	3/29/86 @ 0930
Released By	Date		Received By	Date	
Released By	Date		Received By	Date	, 000017 of 0000

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 3781

Client:	Alpha Analytical Laboratories, Inc.
Client Project ID:	A603727
Date Received:	03/29/2006
Time Received:	09:30 am
Received By:	NM
Logged In By:	GN
# of Samples Received:	9
Duplicates:	9
Storage Location:	R1

Method of Delivery:	California Overnight
Tracking Number:	C1038700000600
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	4
Cooling Method	Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test for residual Chlorine	Yes
Thiosulfate Added	No
Earliest Sample Hold Time Expiration	03/23/2007
Adequate Sample Volume	Yes
Anomalies or additional comments:	

ADDITIONAL COMMENTS Geomatrix 4448 9 EUR 10010 Я 239 8 NN 4 000 N 19 No. of Containers PAGE asw/sw 500 Cooled DATE: 3/24/06 Preservative Type SITE SPECIFIC GLOBAL ID NO. Tel 707.444.7800 Fax 707.444.7848 Filtered REPORTING REQUIREMEN GEOTRACKER REQUIRED Soil (S), Water (W), Vapor (V), or Other (O) Eureka, California 95501-0488 525 Second Street, Suite 203 -Uter Amber TYPE AND SIZE CONTAINER TOTAL NUMBER OF CONTAINERS: SAMPLING COMMENTS: Arcata CLIENT INFORMATION: SPI b 0 8 2 3 10 3/24/06 DATE TIME 8) ANALYSES Frontier - 151 Donado (4:11)5 [00] Specific ノアノロンナのノ LABORATORY CONTACTION A / / / M. W. LABORATORY PHONE NUMBER: LABORATOR! ADDRESS. RECEIVED BY: PRINTED NAMES OWNPANY OF A SIGNATURE: LABORATORY NAME: PRINTED NAME STOP TURE COMPANY COMPANY 191 19 July 6 man X MW-07-200 603 4 x | cogoo2-50- MW hos 3/24/ 300 £09002-02-MW 150111-03-200602 DATE TIME 22754 1124 MU-11-200605 609002-12-MV 2501 MW-A-200603 Arcara MU-02-20063 MW-01-200603 SAMPLE NUMBER SAMPLERS (SIGNATURĘ) CHAIN-OF-CUSTODY RECORD 4. Fe Kein 9329 SE 3 6 3 6 250 o Constrix SIGNATURE: MON HALL
PRINTED NAME: 1140. RELINQUISHED BY: SAMPLE SHIPMENT METHOD: 522 220 TIME PROJECT NAME: 14(Course TURNAROUND TIME: PRINTED NAME PROJECT NUMBER: PRINTED NAME: 90/42/6 4/23 SIGNATURE 21/2 h2/4 4/24 h 2/6 SIGNATUR RESULTS TO: COMPANY: DATE 42/2 2/63 h2/4 COMPAN

APPENDIX C

Laboratory Data Quality Review

APPENDIX C

LABORATORY DATA QUALITY REVIEW

Geomatrix reviewed quality assurance and quality control (QA/QC) procedures to assess the quality of the analytical results with respect to precision, accuracy, and completeness. Data quality was reviewed using U.S. Environmental Protection Agency *National Functional Guidelines for Organic Data Review* (U.S. EPA, 1999), *National Functional Guidelines for Chlorinated Dioxin/Furan Data Review* (U.S. EPA, 2002), and *National Functional Guidelines for Inorganic Data Review* (U.S. EPA, 2004).

PRECISION

Geomatrix evaluated data precision by comparing analytical results for the following:

- primary and (blind) duplicate field samples
- matrix spikes (MS) and matrix spike duplicates (MSD) concentrations
- laboratory control samples (LCS) and laboratory control sample duplicates (LCSD)

We compared the concentrations detected in the primary or spiked samples with the respective concentrations in the duplicate or duplicate spiked samples. We then calculated relative percent differences (RPDs) using the following equation:

$$RPD = \frac{[S-D]}{(S+D)/2} \times 100$$

Where,

S = Sample concentration

D = Duplicate sample concentration

RPDs for primary and duplicate field samples are included in Table C-1. RPDs are only calculated when primary and duplicate sample concentrations are greater than or equal to two times the laboratory reporting limits. In cases where the concentration in either the primary or duplicate sample, or both, is less than two times the reporting limit, the absolute difference between the primary and duplicate sample concentration is calculated. The RPDs for MS/MSD and LCS/LCSD analyses are reported in the laboratory analytical reports, included in Appendix B.

The RPDs between the primary (MW-21) and the duplicate (MW-A) field samples for the primary chemical of concern (PCP) and the majority of the other constituents (see Table C-1) were within acceptance criteria. The RPDs between the primary (MW-21) and the duplicate (MW-A) field samples for hepta-chlorinated dioxin congeners, hepta-chlorinated furan congeners, octa-chlorinated furan congeners, and total TEQ were not within acceptance criteria. In addition, the detections of these compounds were flagged by the analytical laboratory as estimated because they were detected at concentrations below the laboratory's calibration range. This variability in the concentrations of dioxin and furan congeners has been observed previously in field duplicates collected at this site and other sites. Because the detected concentrations are similar to historical detections, they are considered acceptable and representative of site conditions.

ACCURACY

Geomatrix assessed data accuracy by evaluating holding times required by analytical methods, sample preservation, laboratory method blank results, recovery of laboratory surrogates, MS/MSD results, and LCS/LCSD results. The results of our evaluation are summarized below.

- **Holding times.** Samples were analyzed within the holding time for each analytical method.
- **Preservation.** Samples were collected in laboratory-supplied containers with preservatives, if applicable. Samples were stored and transported to analytical laboratories in chilled coolers.
- **Method blanks.** No detections were observed in any of the method blanks analyzed by the laboratory.
- Surrogate recoveries. Laboratory surrogates were recovered at concentrations within acceptable ranges except when dilution prevented meaningful surrogate recoveries for the 8270C SIM method.
- **MS/MSD** analysis. RPDs were acceptable.
- LCS/LCSD analysis. RPDs were acceptable.

COMPLETENESS

Laboratory completeness is a measure of the percent of valid measurements obtained from all the measurements taken in the project. Based on our laboratory data quality review, the data contained in this report are considered complete.

TABLE C-1

RELATIVE PERCENT DIFFERENCES BETWEEN DUPLICATE SAMPLES

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

Samples collected on March 24, 2006

		Sample Concentration	Duplicate Sample Concentration	
	Reporting		-	Relative Percent
Constituent	Limit 1	MW-21	MW-A	Difference ²
Chlorinated Phenols by Canadia	n Pulp Method (reported in microgram	ms per liter [µg/L]) ³	
PCP	1000	13,000	14,000	7.4%
2,3,4,5-TeCP	1.0	8.9	8.8	1.1%
2,3,4,6-TeCP	10	180	190	5.4%
2,3,5,6-TeCP	10	41	41	0.0%
2,4,6-TCP	1.0	1.5	1.4	0.1
Chlorinated Phenols by EPA Me	thod 8270 SIM (reported in µg/L) 4		
PCP	1	7,700	8,000	3.8%
2,3,4,5-TeCP	1	17	20	16.2%
2,3,4,6-TeCP	1	39	44	12.0%
2,3,5,6-TeCP	1	170	180	5.7%
3,4,5-TCP	1	260	270	3.8%
2,4,6-TCP	1	1.1	1.2	0.1
3,4-DCP	1	420	450	6.9%
3,5-DCP	1	17	19	11.1%
2,4,5-TCP	1	9.3	9.0	3.3%
3 + 4-Chlorophenol	2	650	700	7.4%
2,3-DCP	1	2.1	2.2	4.7%
Phenol	1	1.8	1.9	0.1
Dioxins & Furans by EPA Metho	od 1613 (reported	in picograms per lite	er [pg/L]) ⁵	
1,2,3,4,6,7,8-HpCDD		24.1	16.8	35.7%
OCDD		314	326	3.8%
1,2,3,4,6,7,8-HpCDF		7.8	3.24	83.0%
OCDF		23.0	15.7	37.7%
TEQ		0.353	0.235	40.1%
Metals by EPA Method 200.7 (re	ported in milligra	ms per liter [mg/L]) 3		
Calcium	1.0	28	27	3.6%
Magnesium	1.0	47	47	0.0%
Alkalinity by SM 2320B (reported	d in mg/L) 3			
Total Alkalinity as CaCO ₃	5.0	360	360	0.0%
Total Organic Carbon by EPA N	1ethod 415.1 (rep	orted in mg/L) 3		
Total Organic Carbon	1.00	17.7	18.1	2.2%
Anions by EPA Method 300.0 (re	eported in mg/L) 3			
Chloride	5.0	84	84	0.0%

Samples collected on March 24, 2006

Constituent	Reporting Limit ¹	Sample Concentration MW-21	Duplicate Sample Concentration MW-A	Relative Percent Difference ²		
Dissolved Gases by Method RSK175 (reported in mg/L) ⁶						
Methane	0.00158	5.11	5.75	11.8%		
Carbon Dioxide	0.165	156	150	3.9%		
Dissolved Metals by EPA Method 6010B (reported in mg/L) ⁷						
Manganese	0.0050	2.7	2.7	0.0%		
Iron	0.20	70.0	70.0	0.0%		

Notes:

- 1. The reporting limit is presented as the reporting limit for primary/duplicate sample for the listed constituent when the laboratory chose to use different dilutions with which to analyze the respective samples.
- 2. RPD calculated as ([2(S-D)]/[S+D]) x 100 where S is the sample concentration and D is the blind duplicate sample concentration. For sample concentrations less than two times the reporting limit, the absolute difference between the sample concentration and the blind duplicate sample is calculated.
- 3. Analyzed by Alpha Analytical Laboratory, of Ukiah, California.
- 4. Analyzed by Friedman & Bruya, Inc. Environmental Chemists, of Seattle, Washington.
- 5. Analyzed by Frontier Analytical Laboratory, of El Dorado Hills, California.
- 6. Analyzed by K-Prime Inc., of Santa Rosa, California.
- 7. Analyzed by Severn Trent Laboratories, Inc., of Pleasanton, California.

Abbreviations: